Dans cette thèse, je propose des architectures de coprocesseurs haute performance pour implémenter les primitives de cryptographie asymétrique, comme le RSA, les courbes elliptiques ou le couplage. Les coprocesseurs décrits dans cette thèse ont été implémentés dans des FPGA, et présentent des performances jamais égalées auparavant dans la littérature publique sur ce type de technologie. La particularité de ces architectures est l'utilisation du Residue Number System, un mode de représentation alternatif qui utilise les restes chinois pour calculer efficacement les opérations arithmétiques sur les grands nombres. Ces travaux permettent de confirmer expérimentalement les avantages théoriques de ce mode de représentation pour l'arithmétique modulaire, issus de [14, 13, 43]. Au bénéfice théorique que le RNS apporte s'ajoute une forte capacité de parallélisation qui permet d'obtenir des designs réguliers et pipelinés, proposant une fréquence maximale importante tout en réalisant les opérations modulaires dans un nombre très faible de cycles, et ce quelle que soit la taille des nombres. A titre d'exemple, une multiplication scalaire sur une courbe de 160 bits s'effectue en 0.57 ms sur un Altera Stratix, et en 4 ms pour une courbe de 512 bits, là ou les techniques de représentation classiques réalisent la même opération en le double de temps, à technologie équivalente (excepté pour des courbes particulières). Dans le cas du couplage, le gain est encore plus intéressant, puisqu'il a permis une division par 4 de latence de la meilleure implémentation sur corps de grande caractéristique au moment de la publication de [35], et la première implémentation d'un couplage à 128 bits de sécurité sur corps de grande caractéristique à descendre en dessous de la milliseconde. Enfin, je démontre la capacité du RNS à sécuriser une implémentation haute performance, en proposant 2 contre-mesures contre les canaux auxiliaires et les fautes s'adaptant efficacement sur les coprocesseurs et pouvant être utilisées pour toutes les primitives cryptographiques basées sur l'arithmétique modulaire de grands nombres.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00674975 |
Date | 06 January 2012 |
Creators | Guillermin, Nicolas |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds