Return to search

Uma abordagem primal-dual de reescalamento não-linear integrado para problemas de programação matemática discreta-mista com restrições de equilíbrio e suas aplicações ao problema de fluxo de potência ótimo reativo / A primal-dual integrated nonlinear rescaling approach for mixed-discrete mathematical problems with equilibrium constraints and its application to the reactive optimal power flow problems

Neste trabalho propomos uma abordagem computacional especificamente talhada para a solução de problemas de programação matemática discreta-mista com restrições de equilíbrio (MPEC). Para isso, inicialmente, transformamos o MPEC discreto-misto em uma sequência de MPECs contínuos. Na formulação dos MPECs contínuos, inserimos restrições de igualdade e de desigualdades artificias, as quais nos permitem considerar as variáveis discretas como contínuas. Cada MPEC contínuo é transformado em um problema de programação não-linear (PNL) padrão. Isso é feito por meio da reformulação das restrições de complementaridade originais do MPEC contínuo em um conjunto equivalente de restrições usuais de desigualdade. As restrições de igualdade originais do PNL são tratadas por meio da função lagrangiana clássica, as restrições de igualdade artificiais associada às variáveis discretas do PNL são tratadas por meio de uma técnica variante do método de penalidades clássico e as restrições de desigualdade artificias e originais do problema são tratadas por meio do método de reescalamento não-linear integrado proposto neste trabalho. Cada PNL é resolvido por meio de uma abordagem primal-dual do método de reescalamento não-linear integrado (PDRNLI) com atualização dinâmica dos parâmetros e com a estratégia de convergência global proposta. O método PDRNLI é aplicado ao problema de fluxo de potência ótimo reativo com restrições de atuação de dispositivo de controle de tensão associado aos sistemas elétricos IEEE-14, IEEE-30 e IEEE-118 barras. Os resultados numéricos comprovam a eficiência do método PDRNLI proposto para a solução do problema. / In this work we propose a computational approach specifically tailored for solving mixed-discrete mathematical problems with equilibrium constraints (MPEC). For such a purpose, we initially transform the mixed-discrete MPEC problem into a sequence of continuous MPEC problems. In the formulation of the continuous MPECs, we insert artificial equality and inequality constraints, which allow us handling discrete variables as continuous ones. Each continuous MPEC is transformed into a standard nonlinear programming problem (NLP). This is performed by reformulating the original complementarity constraints of the continuous MPEC problems into an equivalent system of standard inequality constraints. The original equality constraints of the NLP problem are handled by means of the classical lagrangian function, while the artificial equality constraints associated with the discrete variables are handled by means of a variant of the classic penalty method. The original and artificial inequality constraints are handled by means of the integrated nonlinear rescaling method proposed in this work. Each NLP is solved by means of a primal-dual version of the integrated nonlinear rescaling approach (PDINLR), with dynamic updating of parameters together with proposed a global convergence strategy. The PDINLR method is applied to the reactive optimal power flow problem with additional constraints associated with the actuation of voltage control devices for the associated with IEEE-14, 30 and 118 bus electrical systems. Numerical results assure the efficiency of the method PDINLR proposed for solving the problem.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12062017-143301
Date03 May 2017
CreatorsPinheiro, Ricardo Bento Nogueira Mori
ContributorsCosta, Geraldo Roberto Martins da, Lage, Guilherme Guimarães
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds