Return to search

Training Wayfinding: Natural Movement In Mixed Reality

The Army needs a distributed training environment that can be accessed whenever and wherever required for training and mission rehearsal. This paper describes an exploratory experiment designed to investigate the effectiveness of a prototype of such a system in training a navigation task. A wearable computer, acoustic tracking system, and see-through head mounted display (HMD) were used to wirelessly track users' head position and orientation while presenting a graphic representation of their virtual surroundings, through which the user walked using natural movement. As previous studies have shown that virtual environments can be used to train navigation, the ability to add natural movement to a type of virtual environment may enhance that training, based on the proprioceptive feedback gained by walking through the environment. Sixty participants were randomly assigned to one of three conditions: route drawing on printed floor plan, rehearsal in the actual facility, and rehearsal in a mixed reality (MR) environment. Participants, divided equally between male and female in each group, studied verbal directions of route, then performed three rehearsals of the route, with those in the map condition drawing it onto three separate printed floor plans, those in the practice condition walking through the actual facility, and participants in the MR condition walking through a three dimensional virtual environment, with landmarks, waypoints and virtual footprints. A scaling factor was used, with each step in the MR environment equal to three steps in the real environment, with the MR environment also broken into "tiles", like pages in an atlas, through which participant progressed, entering each tile in succession until they completed the entire route. Transfer of training testing that consisted of a timed traversal of the route through the actual facility showed a significant difference in route knowledge based on the total time to complete the route, and the number of errors committed while doing so, with "walkers" performing better than participants in the paper map or MR condition, although the effect was weak. Survey knowledge showed little difference among the three rehearsal conditions. Three standardized tests of spatial abilities did not correlate with route traversal time, or errors, or with 3 of the 4 orientation localization tasks. Within the MR rehearsal condition there was a clear performance improvement over the three rehearsal trials as measured by the time required to complete the route in the MR environment which was accepted as an indication that learning occurred. As measured using the Simulator Sickness Questionnaire, there were no incidents of simulator sickness in the MR environment. Rehearsal in the actual facility was the most effective training condition; however, it is often not an acceptable form of rehearsal given an inaccessible or hostile environment. Performance between participants in the other two conditions were indistinguishable, pointing toward continued experimentation that should include the combined effect of paper map rehearsal with mixed reality, especially as it is likely to be the more realistic case for mission rehearsal, since there is no indication that maps should be eliminated. To walk through the environment beforehand can enhance the Soldiers' understanding of their surroundings, as was evident through the comments from participants as they moved from MR to the actual space: "This looks like I was just here", and "There's that pole I kept having trouble with". Such comments lead one to believe that this is a tool to continue to explore and apply. While additional research on the scaling and tiling factors is likely warranted, to determine if the effect can be applied to other environments or tasks, it should be pointed out that this is not a new task for most adults who have interacted with maps, where a scaling factor of 1 to 15,000 is common in orienteering maps, and 1 to 25,000 in military maps. Rehearsal time spent in the MR condition varied widely, some of which could be blamed on an issue referred to as "avatar excursions", a system anomaly that should be addressed in future research. The proprioceptive feedback in MR was expected to positively impact performance scores. It is very likely that proprioceptive feedback is what led to the lack of simulator sickness among these participants. The design of the HMD may have aided in the minimal reported symptoms as it allowed participants some peripheral vision that provided orientation cues as to their body position and movement. Future research might include a direct comparison between this MR, and a virtual environment system through which users move by manipulating an input device such as a mouse or joystick, while physically remaining stationary. The exploration and confirmation of the training capabilities of MR as is an important step in the development and application of the system to the U.S. Army training mission. This experiment was designed to examine one potential training area in a small controlled environment, which can be used as the foundation for experimentation with more complex tasks such as wayfinding through an urban environment, and or in direct comparison to more established virtual environments to determine strengths, as well as areas for improvement, to make MR as an effective addition to the Army training mission.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1881
Date01 January 2006
CreatorsSavage, Ruthann
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0178 seconds