Return to search

Precipitation, recrystallization and solute strengthening in microalloyed steels

Constant strain rate compression and torsion tests were carried out isothermally at temperatures of 875 to 1075(DEGREES)C on a series of six steels. The base steel had a composition of 0.06% C and 1.43% Mn and the others contained one of the following sets of additions: (i) 0.035% Nb; (ii) 0.035% Nb + 0.115% V; (iii) 0.035% Nb + 0.30% Mo; (iv) 0.035% Nb + 1.90% Mn; (v) 0.115% V. The tests were conducted to determine the effects of Mn, Mo, Nb and V, singly and in combination, on the high temperature flow and recrystallization behavior of the materials. The dynamic precipitation kinetics for Nb(CN) and VN were determined by the Weiss method. The two PTT curves were similar, with the nose of the VN curve being situated at a slightly lower temperature (885 vs. 900(DEGREES)C) and at a somewhat longer time (26 vs. 16 s), in agreement with the lower equilibrium solution temperature of VN. The dynamic precipitation kinetics of Nb(CN) were retarded by the addition of Mn, V or Mo. This retardation is attributed to the increased carbonitride solubility that follows the addition of these elements because of the way in which they decrease the C and N activity coefficients. / RTT curves were constructed for dynamic recrystallization in the six steels investigated. These were derived from the peak strains of the compression flow curves, as determined at a strain rate of 3.7 x 10('-2)s('-1). Recrystallization occurred earliest in the plain C steel followed fairly quickly by the 0.115% V steel. All of the Nb bearing steels recrystallized considerably later, with the greatest retardation being noted in the 0.3% Mo steel, where it was nearly twice that due to Nb addition alone. This very large effect, and the retardation due to each of the transition elements, is explained in terms of the electronic differences between iron and the particular element. The effect of the atomic size differences with respect to iron is also considered. / The strengthening due to the presence of Mn, Mo, Nb and V in solution was determined from the yield strengths of these steels. The increment in yield strength over that of the plain C steel was determined as 70% and 7% per 0.1 at.% of Nb and V when each is added singly. The strengthening increased to 80% and 8% respectively for these elements when present jointly in austenite. The strength increments were 9% for Mo and 1.3% for Mn per 0.1 at.% when added to a 0.035% Nb steel. The rank order of these effects is also explained in terms of the electronic and atomic size differences, and a possible reason for the synergistic effect (e.g. in the case of Nb and V in a Nb-V steel) is proposed.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.68529
Date January 1980
CreatorsAkben, Melek G.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Mining and Metallurgical Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 000112871, proquestno: AAINK51841, Theses scanned by UMI/ProQuest.

Page generated in 0.0028 seconds