In the digital business environment, customer service communication has grown up to become a labor- intensive task. In consideration of high labor costs, automatic customer service could be such a good alternative for many companies. However, communication with customers can not be easily automated. Staffs of customer service always need task-specific knowledge and information, which is incapable for automated systems to reply. Therefore, industries with frequent communication to consumers need a semiauto completion system, to cut manpower cost. In this thesis project, I utilized the GPT2 model, which was pre-trained by OpenAI, and finetuned it on MultiWOZ dataset in unsupervised way to train a full-fledged and task-oriented language model. On the basis of this auto-regressive language model, I designed and deployed an auto-completion system that timely predicts words or sentences which users may input in the next moment and provides quick completing suggestions for subsequent dialogue. After that, I evaluated the performance of the language model and practicability of the auto-completion system, and furthermore proposed a possible optimization framework to balance the system’s endogenous contradictions. / I den digitala affärsmiljön har kundservicekommunikation vuxit upp till att bli en arbetsintensiv uppgift. Med tanke på höga arbetskraftskostnader kan automatisk kundservice vara ett bra alternativ för många företag. Kundtjänstpersonal behöver alltid uppgiftspecifik kunskap och information, vilket inte är möjligt för automatiska system att leverera. Därför behöver industrier med frekvent kommunikation till konsumenterna ett semiautomatiskt kompletteringssystem, för att sänka arbetskraftskostnaderna. I detta avhandlingsprojekt använde jag GPT-2-modellen, som förtränats av OpenAI, och finjusterade den på MultiWOZ-datamängden på ett oövervakat sätt för att träna en fullfjädrad och uppgiftsorienterad språkmodell. På grundval av denna autoregressiva språkmodell designade och implementerade jag ett system för automatisk komplettering som i rätt tid förutsäger ord eller meningar som användarna kan mata in i nästa ögonblick och ger snabba kompletteringsförslag för efterföljande dialog. Därefter utvärderade jag prestandan för språkmodellen och genomförbarheten för det automatiska kompletteringssystemet och föreslog dessutom en möjlig optimeringsram för att balansera systemets endogena motsägelser.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-304822 |
Date | January 2021 |
Creators | Zhang, Tonghua |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:679 |
Page generated in 0.0021 seconds