Return to search

Sobre Anéis de Lie Admitindo Automorfismos de Ordens Finitas e Álgebras de Lie Quase Nilpotentes. / Sobre Anéis de Lie Admitindo Automorfismos de Ordens Finitas e Álgebras de Lie Quase Nilpotentes. / On lie Rings Admitting Automorphisms of Fintite Order and Lie Algebras Almost Nilpotent / On lie Rings Admitting Automorphisms of Fintite Order and Lie Algebras Almost Nilpotent

Made available in DSpace on 2014-07-29T16:02:17Z (GMT). No. of bitstreams: 1
EMERSON FERREIRA DE MELO.pdf: 459851 bytes, checksum: b6bbc846b2c7808e954127d464c634e5 (MD5)
Previous issue date: 2011-02-28 / In this work we present a study on Lie rings and algebras admitting an automorphism of finite order. We emphasize questions on nilpotency. We prove important results of this theory, for example the Higman, Kreknin and Kostrikin s Theorem. Furthermore, let L be a finite dimensional Lie algebra over an algebraically closed field of characteristic 0. Suppose that L admits a nilpotent Lie algebra D with n weights in L, and let m be the dimension of the Fitting null component with respect to D. Then L is almost nilpotent, namely, L contains a nilpotent subalgebra N of {m,n}-bounded codimension and of nbounded nilpotency class. If m = 0, then L is nilpotent of bounded class by a function of
n. This theorem was published by E. I. Khukhro and P. Shumyatsky in the paper entitled Lie Algebras with Almost Constant-Free Derivations . / Nesta dissertação apresentamos um estudo sobre anéis e álgebras de Lie admitindo um automorfismo de ordem finita, com ênfase em questões sobre nilpotência. Demonstramos resultados importantes desta teoria, como por exemplo o Teorema de Higman, Kreknin
e Kostrikin. Além disso, considere L uma álgebra de Lie de dimensão finita sobre um corpo algebricamente fechado de característica 0. Suponha que L admita uma álgebra de
derivações nilpotente D com n pesos em L, e seja m a dimensão da componente nula de Fitting com respeito a D. Então L é quase nilpotente, ou seja, L contém uma subálgebra N de codimensão {m,n}-limitada e classe de nilpotência n-limitada. Se m = 0, então L é nilpotente de classe limitada por uma função de n. Este teorema foi publicado por E. I. Khukhro e P. Shumyatsky num artigo intitulado Lie Algebras with almost constant-free
derivations .

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/1938
Date28 February 2011
CreatorsMELO, Emerson Ferreira de
ContributorsSILVA, Jhone Caldeira
PublisherUniversidade Federal de Goiás, Mestrado em Matemática, UFG, BR, Ciências Exatas e da Terra
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds