Return to search

Optimal sensor-based motion planning for autonomous vehicle teams

Approved for public release; distribution is unlimited / Reissued 30 May 2017 with correction to student's affiliation on title page. / Autonomous vehicle teams have great potential in a wide range of maritime sensing applications, including mine countermeasures (MCM). A key enabler for successfully employing autonomous vehicles in MCM missions is motion planning, a collection of algo-rithms for designing trajectories that vehicles must follow. For maximum utility, these algorithms must consider the capabilities and limitations of each team member. At a minimum, they should incorporate dynamic and operational constraints to ensure trajectories are feasible. Another goal is maximizing sensor performance in the presence of uncertainty. Optimal control provides a useful frame-work for solving these types of motion planning problems with dynamic constraints and di_x000B_erent performance objectives, but they usually require numerical solutions. Recent advances in numerical methods have produced a general mathematical and computational framework for numerically solving optimal control problems with parameter uncertainty—generalized optimal control (GenOC)— thus making it possible to numerically solve optimal search problems with multiple searcher, sensor, and target models. In this dissertation, we use the GenOC framework to solve motion planning problems for di_x000B_erentMCMsearch missions conducted by autonomous surface and underwater vehicles. Physics-based sonar detection models are developed for operationally relevant MCM sensors, and the resulting optimal search trajectories improve mine detection performance over conventional lawnmower survey patterns—especially under time or resource constraints. Simulation results highlight the flexibility of this approach for optimal mo-tion planning and pre-mission analysis. Finally, a novel application of this framework is presented to address inverse problems relating search performance to sensor design, team composition, and mission planning for MCM CONOPS development.

Identiferoai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/53003
Date03 1900
CreatorsKragelund, Sean P.
ContributorsKaminer, Isaac I., Mechanical and Aerospace Engineering (MAE)
PublisherMonterey, California: Naval Postgraduate School
Source SetsNaval Postgraduate School
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsCopyright is reserved by the copyright owner.

Page generated in 0.0027 seconds