Nous proposons une approche de planification unifiée pour robots humanoïdes réalisant des tâches de locomotion et de manipulation nécessitant une dextérité propre aux systèmes anthropomorphes. Ces tâches sont basées sur des transitions de contacts ; contacts entre les extrémités des membres locomoteurs et l'environnement dans le cas du problème de locomotion par exemple, ou entre les extrémités de l'organe préhensible effecteur et l'objet manipulé dans le cas du problème de manipulation. Nous planifions ces transitions de contacts pour des systèmes abstraits constitués d'autant de robots, d'objets, et de supports dans l'environnement que désiré/nécessaire pour la modélisation du problème. Cette approche permet de s'affranchir de la distinction de nature entre tâches de locomotion et de manipulation et s'étend à une variété d'autres problèmes tels que la coopération entre plusieurs agents. Nous introduisons notre paradigme de planification non-découplée de locomotion et de manipulation en exhibant la stratification induite dans l'espace des configurations de systèmes simplifiés pour lesquels nous résolvons analytiquement le problème en comparant des méthodes de planification géométrique, non-holonome, et dynamique. Nous présentons ensuite l'algorithme de planification de contacts basé sur une recherche best-first. Cet algorithme fait appel à un solveur de cinématique inverse qui prend en compte des configurations de contacts générales dans l'espace pouvant être établis entre robots, objets, et environnement dans toutes les combinaisons possibles, le tout sous contraintes d'équilibre statique et de respect des limitations mécaniques des robots. La génération de mouvement respectant l'équation de dynamique Lagrangienne est obtenue par une formulation en programme quadratique. Enfin nous envisageons une extension à des supports de contact déformables en considérant des comportements linéaires-élastiques résolus par éléments finis. / We propose a unified planning approach for autonomous humanoid robots that perform dexterous locomotion and manipulation tasks. These tasks are based on contact transitions; for instance between the locomotion limbs of the robot and the environment, or between the manipulation end-effector of the robot and the manipulated object. We plan these contact transitions for general abstract systems made of arbitrary numbers of robots, manipulated objects, and environment supports. This approach allows us to erase distinction between the locomotion and manipulation nature of the tasks and to extend the method to various other planning problems such as collaborative manipulation and locomotion between multiple agents. We introduce our non-decoupled locomotion-and-manipulation planning paradigm by exhibiting the induced stratification of the configuration space of example simplified systems for which we analytically solve the problem comparing geometric path planning, kinematic non-holonomic planning, and dynamic trajectory planning methods. We then present the contact planning algorithm based on best-first search. The algorithm relies on an inverse kinematics solver that handles general robot-robot, robot-object, robot-environment, object-environment, non-horizontal, non-coplanar, friction-based, multi-contact configurations, under static equilibrium and physical limitation constraints. The continuous dynamics-consistent motion is generated in the locomotion case using a quadratic programming formulation. We finally envision the extension to deformable environment contact support by considering linear elasticity behaviours solved using the finite element method.
Identifer | oai:union.ndltd.org:theses.fr/2011MON20104 |
Date | 22 November 2011 |
Creators | Bouyarmane, Karim |
Contributors | Montpellier 2, Kheddar, Abderrahmane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0035 seconds