Return to search

Statistical modelling of data from insect studies / Modelagem estatística de dados provenientes de estudos em entomologia

Data from insect studies may present different features. Univariate responses may be analyzed using generalized linear models (continuous and discrete data), survival models (time until event data), mixed effects models (longitudinal data), among other methods. These models may be used to analyse data from experiments which assess complex ecological processes, such as competition and predation. In that sense, computational tools are useful for researchers in several fields, e.g., insect biology and physiology, applied ecology and biological control. Using different datasets from entomology as motivation, as well as other types of datasets for illustration purposes, this work intended to develop new modelling frameworks and goodness-of-fit assessment tools. We propose accelerated failure rate mixed models with simultaneous location and scale modelling with regressors to analyse time-until-attack data from a choice test experiment. We use the exponential, Weibull and exponentiated-Weibull models, and assess goodness-of-fit using half-normal plots with simulation envelopes. These plots are the subject of an entire Chapter on an R package, called hnp, developed to implement them. We use datasets from different types of experiments to illustrate the use of these plots and the package. A bivariate extension to the N-mixture modelling framework is proposed to analyse longitudinal count data for two species from the same food web that may interact directly or indirectly, and example datasets from ecological studies are used. An advantage of this modelling framework is the computation of an asymmetric correlation coefficient, which may be used by ecologists to study the degree of association between species. The jointNmix R package was also developed to implement the estimation process for these models. Finally, we propose a goodness-of-fit assessment tool for bivariate models, analogous to the half-normal plot with a simulation envelope, and illustrate the approach with simulated data and insect competition data. This tool is also implemented in an R package, called bivrp. All software developed in this thesis is made available freely on the Comprehensive R Archive Network. / Dados provenientes de estudos com insetos podem apresentar características diferentes. Respostas univariadas podem ser analisadas utilizando-se modelos lineares generalizados (dados contínuos e discretos), modelos de análise de sobrevivência (dados de tempo até ocorrência de um evento), modelos de efeitos mistos (dados longitudinais), dentre outros métodos. Esses modelos podem ser usados para analisar dados provenientes de experimentos que avaliam processos ecológicos complexos, como competição e predação. Nesse sentido, ferramentas computacionais são úteis para pesquisadores em diversos campos, por exemplo, biologia e fisiologia de insetos, ecologia aplicada e controle biológico. Utilizando diferentes conjuntos de dados entomológicos como motivação, assim como outros tipos de dados para ilustrar os métodos, este trabalho teve como objetivos desenvolver novos modelos e ferramentas para avaliar a qualidade do ajuste. Foram propostos modelos de tempo de vida acelerado mistos, com modelagem simultânea dos parâmetros de locação e de escala com regressores, para analisar dados de tempo até ataque de um experimento que avaliou escolha de predadores. Foram utilizados modelos exponencial, Weibull e Weibull-exponenciado, e a qualidade do ajuste foi avaliada utilizando gráficos meio-normais com envelope de simulação. Esses gráficos são o assunto de um Capítulo inteiro sobre um pacote para o software R, chamado hnp, desenvolvido para implementá-los. Foram utilizados conjuntos de dados de diferentes tipos de experimentos para ilustrar o uso desses gráficos e do pacote. Uma extensão bivariada para os modelos chamados \"N-mixture\" foi proposta para analisar dados longitudinais de contagem para duas espécies pertencentes à mesma teia trófica, que podem interagir direta e indiretamente, e conjuntos de dados provenientes de estudos ecológicos são usados para ilustrar a abordagem. Uma vantagem dessa estratégica de modelagem é a obtenção de um coeficiente de correlação assimétrico, que pode ser utilizado por ecologistas para inferir acerca do grau de associação entre espécies. O pacote jointNmix foi desenvolvido para implemetar o processo de estimação para esses modelos. Finalmente, foi proposta uma ferramenta de avaliação de qualidade do ajuste para modelos bivariados, análoga ao gráfico meio-normal com envelope de simulação, e a metodologia _e ilustrada com dados simulados e dados de competição de insetos. Essa ferramenta está também implementada em um pacote para o R, chamado bivrp. Todo o software desenvolvido nesta tese está disponível, gratuitamente, na Comprehensive R Archive Network (CRAN).

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06042018-153400
Date19 December 2017
CreatorsRafael de Andrade Moral
ContributorsClarice Garcia Borges Demetrio, Idemauro Antonio Rodrigues de Lara, Rafael Pimentel Maia, Afrânio Márcio Corrêa Vieira, Silvio Sandoval Zocchi
PublisherUniversidade de São Paulo, Agronomia (Estatística e Experimentação Agronômica), USP, BR
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds