Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-04-27Bitstream added on 2014-06-13T19:55:23Z : No. of bitstreams: 1
elias_lj_me_sjrp.pdf: 456982 bytes, checksum: 012c9b4ab5b1b167819de6d4b46a698b (MD5) / Este trabalho apresenta um estudo de um pêndulo eletromecânico com excitação vertical utilizando a teoria de perturbações. O objetivo é fazer um estudo analítico para verificar os efeitos de ressonância no estado estacionário do sistema, efeitos esses provocados por alguns valores de freqüência do sistema dinˆamico. As equações do sistema dinâmico estudado apresentam características que impedem a obtenção de soluções analíticas devido à presença de termos não lineares, e ainda exibem interações ressonantes entre bloco, motor e pêndulo. A análise feita considerou o sistema com ressonância entre o bloco e o motor, mas foi descartada a interação ressonante com o pêndulo. Como a excitação no suporte é vertical, em primeira aproximação a equação do pêndulo é a equação de Mathieu. Devido à presença de um termo não linear nesta equação, foi feito também um estudo com a teoria de perturbações para obter uma solução analítica aproximada, tomando como exemplo a equação de Mathieu analisada no estudo desenvolvido por Nayfeh. As equações para o estado estacionário do sistema foram obtidas através da aplicação de um método de perturbação. O estudo dessas equações foi baseado no trabalho desenvolvido por Kononenko, e os resultados obtidos são análogos, pois o sistema dinâmico deste estudo e o sistema dinâmico considerado por Kononenko guardam certa semelhança. / In this work a study of an electromechanical pendulum with a vertical excitation is done using the Perturbation theory. The main objective is to make an approximate analytic study to verify the effects of resonance at the stationary state of the system, effects that are caused by some values of frequencies of the dynamic system. The equations of the system show characteristics that don’t permit the analytic solutions because of presence of nonlinear terms and there are resonant interactions between the block, the eccentric mass and the pendulum. In this analysis the resonance between the block and the eccentric mass was considered, but the resonance with the pendulum was ignored. As the excitation of the support is vertical, the first approximation of the equation of the pendulum is a Mathieu equation. Due to the presence of one nonlinear term in this equation, a study with the perturbation theory was performed to get a solution at first approximation, following the study made by Nayfeh. The equations for the stationary state were taken through the application of one perturbation method. The study of these equations was based on the work developed by Kononenko and the results obtained are similar, because the dynamic system of this work and the system considered by Kononenko keep certain similarities.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/94250 |
Date | 27 April 2009 |
Creators | Elias, Leandro José [UNESP] |
Contributors | Universidade Estadual Paulista (UNESP), Tsuchida, Masayoshi [UNESP] |
Publisher | Universidade Estadual Paulista (UNESP) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 67 f. : il. color. |
Source | Aleph, reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP |
Rights | info:eu-repo/semantics/openAccess |
Relation | -1, -1 |
Page generated in 0.0024 seconds