L-valine is a branched chain amino acid often used in food, pharmaceutical, cosmetic, and animal feed industries. The most used production method for L-valine and other branched chain amino acids is bacterial fermentation through Escherichia coli or Corynebacterium glutamicum, both of which are heterotrophic bacteria in need of added sugars and energy demanding bioreactors. Synechocystis sp. PCC 6803 is a model cyanobacteria that only uses carbon dioxide and sunlight as energy source and naturally can biosynthesize L-valine, which makes it a suitable platform for sustainable production. The regulation of the L-valine biosynthesis pathway is not fully understood why more research is needed to be able to optimize the production of L-valine. In other organisms, there is feedback inhibition by L-valine that limit the biosynthesis which might be the case for Synechocystis as well. During this project, adaptive laboratory evolution was used to increase the valine tolerance of Synechocystis sp. PCC 6803, by evolving the cells to grow in increasing concentrations of L-valine over multiple generations. This resulted in a final strain that had a tenfold increase in tolerance compared to non-evolved wild type Synechocystis. Whole genome sequencing was used to determine if and what mutations had led to the increased tolerance. Another aim of the project was to evolve a strain that overproduced L-valine. This was done by adaptive laboratory evolution with norvaline as a selection pressure. Norvaline is an amino acid analogue that has a very similar structure to valine, why it can be mis incorporated during aminoacyl-tRNA synthetase. We hypothesized that the Synechocystis cells would overproduce L-valine to outcompete the increased norvaline, thereby increasing the norvaline tolerance. Through adaptive laboratory evolution the norvaline tolerance was increased, but the mechanism behind the tolerance could not be determined during this project. The production of all branched chain amino acids by the evolved strains first needs to be measured to determine if they are in fact producing more L-valine. Then, transcriptomics and/or whole genome sequencing can be used to investigate what genes are regulated or mutated to obtain the increased L-valine production.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-528321 |
Date | January 2024 |
Creators | Sarah, Ågren |
Publisher | Uppsala universitet, Molekylär biomimetik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC X ; 24002 |
Page generated in 0.0014 seconds