Return to search

Utredning av frekvensregleringens påverkan på mekanisk utrustning i en kaplanturbin / Investigation of the impact of frequency controlled operation on the controlling mechanism in a Kaplan turbine

As a consequence of increasing wind power installations in the Nordic grid the last years, the need for regulating power has become larger. In the Nordic grid, regulating power is mainly provided by hydro power. One part of the regulating power is called frequency control, which ensures that the grid frequency is stable and close to 50 Hz. However, setting the turbine into frequency controlled operation may cause stress and wear of the components in the mechanical control system. Frequency controlling implies large and frequent servo forces and longer travelling distance of the sliding bearings in the Kaplan turbine. Based on one selected Kaplan turbine, Selsfors G1, measurements and MATLAB calculations have been performed in order to determine forces and movements of the linkage system. With these forces and movements as input, stresses and fatigue have been determined as well as sliding distances, bearing pressures and wear of bearings during a typical lifetime of 40 years. The results indicate that no severe wear exists on the bearings during 40 years of service. This is valid for Selsfors G1, where self-lubricating greaseless Orkot bearings are installed. The wear is much smaller than the largest allowed bearing clearance, as long as the bearings are mounted correctly and free from dirt and oil. For turbines with grease or oil lubricated bearings, the result might differ. The highest average stresses have been recorded in the links in the runner. A very simple Finite Element Analysis has been made for the links, to estimate risk of fatigue. The stresses are much lower compared to the fatigue limit, and thus the risk of fatigue is considered very small. In situations where wear and large load changes after all are problems, a change in the turbine regulator settings is recommended. A dead band reduces the sliding distances of the bearings and the amount of load changes remarkably, but causes on the other hand lower turbine efficiency and worse quality of the frequency control.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-247261
Date January 2015
CreatorsForsström, William
PublisherUppsala universitet, Elektricitetslära
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC ES, 1650-8300 ; 15011

Page generated in 0.0025 seconds