Return to search

Study of the Preparation of Mesoporous Magnetic Microspheres and Their Applications

Treatment of wastewater using magnetic technology is a rising field. In this thesis, the latest research on the subject is reviewed and several adsorbents with different coatings, which impart them unique properties, are discussed. Separation of particles from aqueous solution using magnetic technology is more convenient compared to conventional techniques, such as filtration and centrifugation. The adsorbents described in this thesis are effective for adsorption of several types of contaminants, such as heavy metals and different types of dyes.    Magnetic microspheres were synthesised using porous polystyrene microspheres as template. The microspheres were first sulfonated using chlorosulfonic acid followed by stirring in the presence of ferrous chloride which then was oxidised and magnetic nanoparticles were formed on the surface.    The sulfonated microspheres had a surface area of 420 m2/g and the magnetic 175 m2/g, indicative of Fe3O4 nanoparticles were successfully formed in the pores. The weight fraction of the Fe3O4 nanoparticles in the magnetic microspheres was 33 %.    Adsorption and desorption studies of the cationic dye, methylene blue, using mesoporous magnetic microspheres were performed. The results show that the mesoporous magnetic microspheres have good ability to adsorb methylene blue at low concentrations. In a cycle study the adsorption efficiency were nearly 100 % throughout the study. Using a 6/4 EtOH/H2O with saturated KCl solution the desorption efficiency in the cycle study were about 95 %.      The microspheres were used as carriers for TiO2 in order to overcome the problem with the separation of TiO2 from solution. The TGA results show that the microspheres contained about 12 % of TiO2. The TiO2 coated microspheres were used for the photocatalytic degradation of phenol. However, the TiO2 microspheres did not work. This was a result from that the phenol had too little contact with the TiO2. A possible way of solving this problem could be to decrease the size of the microspheres, thus increase the surface area.    Lysozyme was adsorbed and separated using the porous microspheres. The lysozyme adsorption worked best at pH 9.6, which is the pI for lysozyme. The lysozyme could be extracted from the microspheres by using a pH 13 buffer. Also, by using MeOH/H2O and EtOH/H2O solutions with saturated KCl the lysozyme could be desorbed. An adsorption and desorption mechanism was also presented. / Vattenrening med magnetisk teknologi är en ny och alltmer uppmärksammad teknik. Magnetisk separation är ett enkelt och snabbt sätt att separera något från en lösning. Magnetisk separation är mer lätthanterligt jämfört med traditionell separationsteknik såsom centrifugering och filtrering.  Med porösa polystyren mikrosfärer som mall, syntetiserades magnetiska mikrosfärer. Först så sulfonerades mikrosfärerna med klorosulfonisk syra, följt av att de rördes om i en järnkloridlösning. Magnetiska nanopartiklar bildades i porerna och på ytan av mikrosfärerna.    Sulfonerade mikrosfärerna hade en specifik ytarea på 420 m2/g och de magnetiska 175 m2/g, detta indikerar att Fe3O4-nanopartiklar bildades på ytan och i porerna. Massfraktionen av Fe3O4 var 33 %.    Adsorption- och desorptionsstudier på de magnetiska mikrosfärerna utfördes. Färgämnet metylblått användes i studien. Resultaten visade att magnetiska mikrosfärerna hade en bra adsorptionsförmåga vid låga koncentrationer av metylblått. Cykelstudier visade att adsorptionsverkningsgraden var nära 100 % under flera adsorptionscykler. Desorptionsförsök med olika lösningsmedel visade att en mättad KCl 6/4 EtOH/H2O lösning gav en desorptions-verkningsgrad på ca 95 %.   Mikrosfärerna användes som mall och kärna för att syntetisera en TiO2-fotokatalysator, detta för att överkomma problemet som finns med separation av rent TiO2 pulver från lösning. TGA resultaten visade att mikrosfärerna innehöll ca 12 % TiO2. De syntetiserade TiO2-mikrosfärerna användes till att bryta ner fenol fotokatalytiskt. Dock fungerade inte detta experiment. En anledning var att fenolen hade för lite kontakt med TiO2. En lösning på detta problem är att använda mikrosfärer med högre specifik ytarea.    Proteinet lysozym användes som modellprotein för försök att separera proteiner från lösning genom att använda porösa mikrosfärer. Resultatet visade att lysozym kunde adsorberas vid pH 9.6. Med en pH 13 buffer kunde lysozymet sedan extraheras från mikrosfärerna. En mekanism för adsorptionen och desorptionen på mikrosfärerna presenterades.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-102550
Date January 2009
CreatorsEricson, Mårten
PublisherKTH, Industriell ekologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-IM, 1402-7615 ; 2009:25

Page generated in 0.0073 seconds