O objetivo deste trabalho foi comparar as classificações obtidas por meio de algoritmos de classificação não supervisionada e supervisionada, aplicados a uma região com paisagem complexa, dentro da bacia do rio Corumbataí, SP. Foram utilizados os algoritmos de Máxima Verossimilhança, no software ENVI, e CLUSTER, o ISOCLUST e o MAXSET no software Idrisi o. A imagem multiespectral utilizada foi do satélite SPOT. A área de estudo abrangeu os municípios de Piracicaba, Rio Claro, Itirapina, Analândia, Corumbataí, Charqueada e Ipeúna. Foram observadas várias categorias e classificadas, dentre elas, as seguintes: cana-de-açúcar, pasto, vegetação nativa, solo exposto, reflorestamento e área urbana. Após o reconhecimento em campo das categorias, procedeu-se à classificação utilizando-se os algoritmos Foram observadas várias categorias e classificadas, dentre elas, as seguintes: cana-de-açúcar, pasto, vegetação nativa, solo exposto, reflorestamento e área urbana. Após o reconhecimento em campo das categorias, procedeu-se à classificação utilizando-se os algoritmos CLUSTER, ISOCLUST E MAXSET, dos quais o que apresentou melhores resultados foi o ISOCLUST, sendo, portanto, o mais recomendado para utilização por ser eficiente e demandar menor tempo para obter-se a classificação final da vegetação / not available
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-20181127-161840 |
Date | 24 April 2002 |
Creators | Ciro Koiti Matsukuma |
Contributors | Carlos Alberto Vettorazzi |
Publisher | Universidade de São Paulo, Recursos Florestais, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds