Return to search

La formation et l'évolution des galaxies grâce à la spectroscopie 3D : le rôle des vents / The role of galactic winds in galaxy evolution and formation using 3D spectroscopy

Le modèle cosmolgique standard Λ-CDM est celui qui connaît le plus grand succès dans la cosmologie moderne. Pourtant, malgré sa capacité à expliquer la domination de la matière noire sur la structuration de l'univers à grande échelle, il échoue, parfois dramatiquement, lorsque la physique complexe de la matière baryonique entre en jeu. En particulier, l'une des plus grandes questions restant encore sans réponse concerne la différence importante entre la quantité de matière baryonique prédite et celle réellement observée dans les halos de galaxies de faible et de grande masse (e.g. Behroozi et al., 2013b). Les modèles théoriques prédisent beaucoup trop de masse comparé à ce qui est véritablement observé, ce qui mène à la conclusion qu'il existe des mécanismes permettant d'éjecter une partie du réservoir de matière baryonique des galaxies, ce qui affectera donc leur évolution. En d'autres termes, si nous voulons comprendre l'évolution des galaxies, il est essentiel de comprendre de manière précise comment ces galaxies perdent une partie de leur matière baryonique. Pour les galaxies de faibles masses, un ingrédient clé est contenu dans les vents produits par les explosions de supernovae (Dekel & Silk, 1986). Non seulement ces vents peuvent être efficaces pour éjecter le gaz et les métaux du disque galactique, pour enrichir le milieu inter-galactique en éléments lourds (Oppenheimer et al., 2010), mais ils sont aussi observés dans presque toutes les galaxies à formation d'étoiles (Veilleux et al., 2005a), ce qui donne à ces vents un rôle important concernant le cycle de la matière dans les galaxies. Notre connaissance incomplète concernant les relations entre la galaxie et les propriétés du gaz qu'elle éjecte, comme le lien entre le taux de formation stellaire (SFR) et la quantité de masse éjectée Mout , limite notre capacité à produire des simulations numériques précises sur l'évolution des galaxies. L'objectif de cette thèse est de quantifier les propriétés des vents galactiques en utilisant des quasars en arrière plan et la spectroscopie 3D. Afin d'y parvenir, nous utiliserons une quantité importante de données provenant de plusieurs instruments (SDSS, LRIS au Keck, SINFONI, UVES et MUSE au VLT). Grâce à cette nouvelle stratégie d'observation et l'utilisation d'instruments de pointe, nous avons pu augmenter l'échantillon d'un ordre de grandeur et ainsi obtenir de bien meilleures contraintes sur les propriétés du gaz qui s'échappe des galaxies de faible masse. / The Λ-CDM model is one of the most resounding triumphs of modern cosmology. Yet, even though it is immensely successful at explaining the dark matter dominated large scale structures, it fails, sometimes dramatically, when the complex physics of baryonic matter comes into play. In particular, one of the major remaining discrepancies is between the observed and predicted baryonic densities of the dark matter halos of galaxies both in the high mass and low mass regimes (e.g. Behroozi et al., 2013b). Theoretical models predict much more mass than is actually observed, leading to the conclusion that there are mechanisms at play ejecting part of the baryonic matter reservoir from galaxies and therefore affecting their evolution. In other words, if we want to understand the evolution of galaxies, it is essential to understand precisely how galaxies lose a fraction of their baryonic matter. For low mass galaxies, a key part of the solution lies on supernovae-driven outflows (Dekel & Silk, 1986). Not only can such outflows efficiently expel gas and metals from galactic disks, enriching the inter-galactic medium (Oppenheimer et al., 2010), they are also observed in almost every star-forming galaxy (Veilleux et al., 2005a), making them an important part of the matter cycle of galaxies in general. Our incomplete knowledge of scaling relations between galaxies and the properties of their outflowing material, such as between the star formation rate (SFR) and the ejected mass rate Mout, limits our ability to produce accurate numerical simulations of galaxy evolution. The objective of this thesis is to quantify galactic wind properties using background quasars and 3D spectroscopy. In order to achieve our goal, we use large data sets from several instruments (SDSS, LRIS at Keck, SINFONI, UVES and MUSE on VLT). After developing observational strategies in order to have the largest data set possible with this technique, we increased the number of observations by 1 order of magnitude which resulted in better constraints on the outflowing materials for the low mass galaxies.

Identiferoai:union.ndltd.org:theses.fr/2017TOU30012
Date05 January 2017
CreatorsSchroetter, Ilane
ContributorsToulouse 3, Bouché, Nicolas, Contini, Thierry
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0032 seconds