• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 36
  • 29
  • 25
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 695
  • 253
  • 225
  • 204
  • 180
  • 177
  • 176
  • 162
  • 157
  • 145
  • 134
  • 107
  • 101
  • 72
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Luminous infrared galaxies : a sub-millimetre perspective of enhanced star formation

Fox, Matthew January 2000 (has links)
No description available.
2

Hot stars in the small magellanic cloud

Evans, Christopher John January 2001 (has links)
No description available.
3

XMM and ROSAT observations of clusters of galaxies

Spurgeon, Louise Elizabeth January 2003 (has links)
I present an investigation into the X-ray properties of galaxy clusters, consisting of a principal component analysis of ROSAT data and studies of three clusters observed with the XMM-Newton satellite. The principal component analysis provides an investigation into similarities between cluster surface brightness profiles. Initial results for 42 clusters are presented and compared to existing models. The cluster profiles are reproduced to good accuracy using three principal components. Correlation of the principal components to physical properties is investigated but the results are inconclusive. Observations of Abell 1413, Abell 665 and Abell 2163 made with XMM-Newton were investigated spectrally and spatially to determine cluster properties. Global temperatures were found to be 7.08 +/- 0.140.13 keV for Abell 665 and 11.98 +/- 1.2 keV for Abell 2163. The temperature and abundance profiles of the clusters are very different, with some differences attributed to the recent merging of subclusters in Abell 665 and Abell 2163. Spatial analysis of the cluster surface brightness profiles is undertaken with beta and NFW models. The profiles produced for the three clusters are used to estimate the variation of gas, gravitational and iron mass with radius. These are used to draw general conclusions, such supernovae numbers (NSNII 109--11). The cosmological density and matter density parameters are found; &OHgr;0 = 0.22 -- 0.33 +/- 0.1 and &OHgr; m ? 0.12+/-0.060.04. This suggests a low density universe, but is subject to uncertainty due to extrapolation to larger radii.
4

Galaxy evolution in a large sample of X-ray clusters

Urquhart, Sheona Anne 17 December 2013 (has links)
The evolution of galaxy populations is dependent upon the environment in which they are located, from low mass galaxy groups to rich galaxy clusters. However, what remains unclear is which physical process(es) dominate this evolution. We investigate this using uniform CFHT Megacam photometry for X-ray selected galaxy clusters from the X-Ray Multi-Mirror (XMM) Large Scale Structure (LSS) survey and the Canadian Cluster Comparison Project (CCCP). These clusters possess X-ray temperatures of 1<kT(keV)<12 and occupy a redshift interval 0.15<z<0.41 to minimise any redshift dependent photometric effects. We investigate the colour bimodality of cluster galaxy populations and compute blue fractions, identifying a trend of increasing blue fraction versus redshift. We also identify an environmental dependence of cluster blue fraction with cool clusters displaying higher values than hotter clusters. Using the local galaxy density parameter, ∑5, we find a greater variation in blue fraction as a function of ∑5 in low mass groups compared to high mass clusters, but all samples show a decrease in blue fraction with increasing local galaxy density, consistent with galaxy-galaxy interactions. Global cluster environment is also playing a role, at similar local galaxy densities, there is a greater decrease in blue fraction as cluster temperature increases. Through simple modelling, we find that our mid and hot samples have had large enough halo masses for sufficient lengths of time for environmental mechanisms to act and observe that the value of fB does not depend strongly on the current state of the X-ray gas. Our dwarf-to-giant ratios add further support to an emerging picture of galaxy-cluster and galaxy-galaxy interactions where we find that the dwarf population is produced via ram-pressure stripping and passive reddening before conversion into giants via the effects of merging. Using the GIM2D modelling package to determine morphological parameters, we observe an increase in the fraction of bulge-dominated galaxies with increasing local galaxy density, however, the morphological mix responds less strongly to variations in global environment than does the colour mix. / Graduate / 0605 / 0606 / sheonaurquhart4@gmail.com
5

Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations

Hayes, Christian R., Majewski, Steven R., Shetrone, Matthew, Fernández-Alvar, Emma, Prieto, Carlos Allende, Schuster, William J., Carigi, Leticia, Cunha, Katia, Smith, Verne V., Sobeck, Jennifer, Almeida, Andres, Beers, Timothy C., Carrera, Ricardo, Fernández-Trincado, J. G., García-Hernández, D. A., Geisler, Doug, Lane, Richard R., Lucatello, Sara, Matthews, Allison M., Minniti, Dante, Nitschelm, Christian, Tang, Baitian, Tissera, Patricia B., Zamora, Olga 05 January 2018 (has links)
We find two chemically distinct populations separated relatively cleanly in the [Fe/H]-[Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities [Fe/H] < -0.9) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the alpha-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote "the HMg population") exhibits a significant net Galactic rotation, whereas the low-Mg population (or "the LMg population") has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with in situ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low-and high-a halo stars found in previous studies, suggesting that these are samples of the same two populations.
6

Response of the Milky Way's disc to the Large Magellanic Cloud in a first infall scenario

Laporte, Chervin F. P., Gómez, Facundo A., Besla, Gurtina, Johnston, Kathryn V., Garavito-Camargo, Nicolas 01 1900 (has links)
We present N-body and hydrodynamical simulations of the response of the Milky Way's baryonic disc to the presence of the Large Magellanic Cloud during a first infall scenario. For a fiducial Galactic model reproducing the gross properties of the Galaxy, we explore a set of six initial conditions for the Large Magellanic Cloud (LMC) of varying mass which all evolve to fit the measured constraints on its current position and velocity with respect to the Galactic Centre. We find that the LMC can produce strong disturbances - warping of the stellar and gaseous discs - in the Galaxy, without violating constraints from the phase-space distribution of stars in the Solar Neighbourhood. All models correctly reproduce the phases of the warp and its antisymmetrical shape about the disc's mid-plane. If the warp is due to the LMC alone, then the largest mass model is favoured (2.5 x 10(11) M-circle dot). Still, some quantitative discrepancies remain, including deficits in height of Delta Z = 0.7 kpc at R = 22 kpc and Delta Z = 0.7 kpc at R = 16 kpc. This suggests that even higher infall masses for the LMC's halo are allowed by the data. A comparison with the vertical perturbations induced by a heavy Sagittarius dSph model (10(11) M-circle dot) suggest that positive interference with the LMC warp is expected at R = 16 kpc. We conclude that the vertical structure of the Galactic disc beyond the Solar Neighbourhood may jointly be shaped by its most massive satellites. As such, the current structure of the Milky Way suggests we are seeing the process of disc heating by satellite interactions in action.
7

The properties and evolution of galaxy populations in the rich cluster environment

Pracy, Michael Benjamin, Physics, Faculty of Science, UNSW January 2006 (has links)
This thesis is concerned with the role the rich cluster environment plays in the evolution of its galaxy population. We approach this issue from two angles, first we use deep wide-field imaging to investigate the effect of the cluster environment on the spatial and luminosity distribution of galaxies. Secondly, we focus on one particularly interesting class of galaxy, the enigmatic E+A galaxies, using a combination of state-of-the-art telescopes and novel instrumentation to elucidate the physical mechanisms and environmental influences causing the rapid change in star-formation activity in these galaxies. We present results from a deep photometric study of the rich galaxy cluster Abell 2218 (z=0.18) based on Hubble Space Telescope images. These have been used to derive the cluster luminosity function to extremely faint limits. We find the faint-end slope of the luminosity function to vary with environment within the cluster - in the sense that the ratio of `dwarf' galaxies to `giant' galaxies increases in the lower-density outskirt regions. Using imaging obtained with the Isaac Newton Telescope (INT) we confirm the presence of luminosity segregation in Abell 2218. However, luminosity segregation in clusters does not appear to be ubiquitous, with two other clusters studied with the INT (A119 at z=0.04 and A2443 at z=0.11) showing no sign of luminosity segregation of their galaxy populations. We use integral field spectroscopy of a sample of E+A galaxies in intermediate redshift clusters, obtained with the FLAMES system on the European Southern Observatory's VLT and the GMOS instrument on Gemini-North, to determine the radial variation in the strength of Hdelta absorption in these galaxies, and hence map out the distribution of the recently formed stellar population. We find a diversity of behaviour amongst these galaxies in terms of the radial variation in Hdelta absorption: with gradients that are either negative, flat, or positive. By comparing with numerical simulations we suggest that the first of these different types of radial behaviour provides evidence for a merger/interaction origin, whereas the latter two types of behaviour are more consistent with the truncation of star formation in normal disk galaxies.
8

Star Formation and Environmental Quenching of Group Galaxies from the GEEC2 Survey at z~1

Mok, Angus King Fai January 2013 (has links)
This work presents detailed analysis from the GEEC2 spectroscopic survey of galaxy groups at 0.8<z<1. This deep survey, which has a magnitude limit of r_AB<24.75, had previously found a population of intermediate ('green') galaxies between the star-forming ('blue') and quiescent ('red') sequences. GMOS-S spectroscopy for the 11 X-ray selected galaxy groups was obtained and is highly complete ( > 66 per cent) for eight of the eleven groups. Using an optical-NIR colour-colour diagram, the galaxies in the sample are separated with a dust insensitive method into the three categories, star-forming, quiescent, and intermediate. The strongest environmental dependence is observed in the fraction of quiescent galaxies, which is higher inside groups than in the field for all stellar masses. While intermediate galaxies represent ~15-20 per cent of the star-forming population in both the group and field, the average specific star formation rates (sSFR) of the group population is lower by a factor of ~3. The intermediate population also does not show the strong Hδ absorption that is characteristic of starburst galaxies. Inside groups, only 4.4-6.7 per cent of star-forming galaxies are starbursts, which gives additional validity to the assumption that the quenching of star-formation is the primary process in the transition from the star-forming to the quiescent state. With the use of stellar synthesis models, two possible scenarios for the origins of the intermediate population are investigated, including the quenching of star-forming galaxies via environmental processes and the rejuvenation of star formation in early-type galaxies via mixed mergers. To model the quenching scenario, we have tested the use of different exponential quenching timescales (τ_2) and different types of delays between satellite accretion and the onset of quenching. We found that the fraction of intermediate galaxies depends most strongly on the value of τ_2. The relative fractions of galaxies rule out both the no-delay scenario, which would require a long τ_2 that over-produces intermediate galaxies, as well as the constant 3 Gyr delay model, which does not produce a sufficient number of quiescent galaxies. The observed fractions are best matched with a model that includes a dynamical delay time and a τ_2=0.25 Gyr, but this model also predicts intermediate galaxies Hδ strength higher than that observed. For the rejuvenation scenario, we found that the time visible in the intermediate region is directly related to the size of the second 'burst' of star-formation, which can then be further constrained by the Hδ strength for the intermediate population. The observations are best matched to a burst size of ~1 per cent, at a rate of ~3 times per Gyr. In order to properly distinguish between the two scenarios, we will need to both increase the signal-to-noise ratio for the Hδ measurements and conduct a deeper survey of satellite galaxies both inside groups and in the field.
9

Star Formation and Environmental Quenching of Group Galaxies from the GEEC2 Survey at z~1

Mok, Angus King Fai January 2013 (has links)
This work presents detailed analysis from the GEEC2 spectroscopic survey of galaxy groups at 0.8<z<1. This deep survey, which has a magnitude limit of r_AB<24.75, had previously found a population of intermediate ('green') galaxies between the star-forming ('blue') and quiescent ('red') sequences. GMOS-S spectroscopy for the 11 X-ray selected galaxy groups was obtained and is highly complete ( > 66 per cent) for eight of the eleven groups. Using an optical-NIR colour-colour diagram, the galaxies in the sample are separated with a dust insensitive method into the three categories, star-forming, quiescent, and intermediate. The strongest environmental dependence is observed in the fraction of quiescent galaxies, which is higher inside groups than in the field for all stellar masses. While intermediate galaxies represent ~15-20 per cent of the star-forming population in both the group and field, the average specific star formation rates (sSFR) of the group population is lower by a factor of ~3. The intermediate population also does not show the strong Hδ absorption that is characteristic of starburst galaxies. Inside groups, only 4.4-6.7 per cent of star-forming galaxies are starbursts, which gives additional validity to the assumption that the quenching of star-formation is the primary process in the transition from the star-forming to the quiescent state. With the use of stellar synthesis models, two possible scenarios for the origins of the intermediate population are investigated, including the quenching of star-forming galaxies via environmental processes and the rejuvenation of star formation in early-type galaxies via mixed mergers. To model the quenching scenario, we have tested the use of different exponential quenching timescales (τ_2) and different types of delays between satellite accretion and the onset of quenching. We found that the fraction of intermediate galaxies depends most strongly on the value of τ_2. The relative fractions of galaxies rule out both the no-delay scenario, which would require a long τ_2 that over-produces intermediate galaxies, as well as the constant 3 Gyr delay model, which does not produce a sufficient number of quiescent galaxies. The observed fractions are best matched with a model that includes a dynamical delay time and a τ_2=0.25 Gyr, but this model also predicts intermediate galaxies Hδ strength higher than that observed. For the rejuvenation scenario, we found that the time visible in the intermediate region is directly related to the size of the second 'burst' of star-formation, which can then be further constrained by the Hδ strength for the intermediate population. The observations are best matched to a burst size of ~1 per cent, at a rate of ~3 times per Gyr. In order to properly distinguish between the two scenarios, we will need to both increase the signal-to-noise ratio for the Hδ measurements and conduct a deeper survey of satellite galaxies both inside groups and in the field.
10

The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

Majewski, Steven R., Schiavon, Ricardo P., Frinchaboy, Peter M., Prieto, Carlos Allende, Barkhouser, Robert, Bizyaev, Dmitry, Blank, Basil, Brunner, Sophia, Burton, Adam, Carrera, Ricardo, Chojnowski, S. Drew, Cunha, Kátia, Epstein, Courtney, Fitzgerald, Greg, Pérez, Ana E. García, Hearty, Fred R., Henderson, Chuck, Holtzman, Jon A., Johnson, Jennifer A., Lam, Charles R., Lawler, James E., Maseman, Paul, Mészáros, Szabolcs, Nelson, Matthew, Nguyen, Duy Coung, Nidever, David L., Pinsonneault, Marc, Shetrone, Matthew, Smee, Stephen, Smith, Verne V., Stolberg, Todd, Skrutskie, Michael F., Walker, Eric, Wilson, John C., Zasowski, Gail, Anders, Friedrich, Basu, Sarbani, Beland, Stephane, Blanton, Michael R., Bovy, Jo, Brownstein, Joel R., Carlberg, Joleen, Chaplin, William, Chiappini, Cristina, Eisenstein, Daniel J., Elsworth, Yvonne, Feuillet, Diane, Fleming, Scott W., Galbraith-Frew, Jessica, García, Rafael A., García-Hernández, D. Aníbal, Gillespie, Bruce A., Girardi, Léo, Gunn, James E., Hasselquist, Sten, Hayden, Michael R., Hekker, Saskia, Ivans, Inese, Kinemuchi, Karen, Klaene, Mark, Mahadevan, Suvrath, Mathur, Savita, Mosser, Benoît, Muna, Demitri, Munn, Jeffrey A., Nichol, Robert C., O’Connell, Robert W., Parejko, John K., Robin, A. C., Rocha-Pinto, Helio, Schultheis, Matthias, Serenelli, Aldo M., Shane, Neville, Aguirre, Victor Silva, Sobeck, Jennifer S., Thompson, Benjamin, Troup, Nicholas W., Weinberg, David H., Zamora, Olga 14 August 2017 (has links)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R similar to 22,500), high signal-to-noise ratio (>100), infrared (1.51-1.70 mu m) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design-hardware, field placement, target selection, operations-and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available.

Page generated in 0.0508 seconds