M-matrices are extensively employed in numerical analysis. These matrices can be generalized by corresponding operators on a partially ordered normed space. We extend results which are well-known for M-matrices to this more general setting. We investigate two different notions of an M-operator, where we focus on two questions: 1. For which types of partially ordered normed spaces do the both notions coincide? This leads to the study of positive-off-diagonal operators. 2. Which conditions on an M-operator ensure that its (positive) inverse satisfies certain maximum principles? We deal with generalizations of the "maximum principle for inverse column entries". / M-Matrizen werden in der numerischen Mathematik vielfältig angewandt. Eine Verallgemeinerung dieser Matrizen sind entsprechende Operatoren auf halbgeordneten normierten Räumen. Bekannte Aussagen aus der Theorie der M-Matrizen werden auf diese Situation übertragen. Für zwei verschiedene Typen von M-Operatoren werden die folgenden Fragen behandelt: 1. Für welche geordneten normierten Räume sind die beiden Typen gleich? Dies führt zur Untersuchung außerdiagonal-positiver Operatoren. 2. Welche Bedingungen an einen M-Operator sichern, dass seine (positive) Inverse gewissen Maximumprinzipien genügt? Es werden Verallgemeinerungen des "Maximumprinzips für inverse Spalteneinträge" angegeben und untersucht.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25013 |
Date | 10 July 2006 |
Creators | Kalauch, Anke |
Contributors | Weber, Martin R., Wnuk, Witold, Chen, Zi Li |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds