Permeable reactive barrier (PRB) technology is increasingly considered for in situ treatment of contaminated groundwater; however, current design formulas for PRBs are limited and do not properly account for all major physical and attenuation processes driving remediation. This study focused on developing a simple methodology to design PRBs that is easy to implement while improving accuracy and being more conservative than the available design methodologies. An empirical design equation and a simple analytical design equation were obtained to calculate the thickness of a PRB capable of degrading a contaminant from a source contaminant concentration to a maximum contaminant level at a Point of compliance . Both equations integrate the fundamental components that drive the natural attenuation process of the aquifer and the reactive capacity of the PRB.The empirical design equation was derived from a dataset of random hypothetical cases that used the solutions of the PRB conceptual model (Solution I). The analytical design equation was derived from particular solutions of the model (Solution II) which the study showed fit the complex solutions of the model well. Using the hypothetical cases, the analytical equation has shown that it gives an estimated thickness of the PRB just 15 % lower or higher than the real thickness of the PRB 95 percent of the time. To calculate the design thickness of a PRB, Natural attenuation capacity of the aquifer can be estimated from the observed contaminant concentration changes along aquifer flowpaths prior to the installation of a PRB. Bench-scale or pilot testing can provide good estimates of the required residence times ( Gavaskar et al. 2000) , which will provide the reactive capacity of the PRB needed for the calculation. The results of this study suggest also that the installation location downgradient from the source of contaminant is flexible. If a PRB is installed in two different locations, it will achieve the same remediation goals. This important finding gives engineers and scientists the choice to adjust the location of their PRBs so that the overall project can be the most feasible and cost effective. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32264 |
Date | 06 June 2008 |
Creators | Hafsi, Amine |
Contributors | Civil Engineering, Widdowson, Mark A., Filz, George M., Little, John C. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Amine_Hafsi_MS_Thesis.pdf |
Page generated in 0.0016 seconds