• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Innovative soil mix technology constructed permeable reactive barrier for groundwater remediation

Abunada, Ziyad January 2015 (has links)
No description available.
2

In Situ Groundwater Remediation using Enricher Reactor-Permeable Reactive Biobarrier

Somayajula, Sreerama Murthy Kasi January 2012 (has links)
Permeable reactive biobarrier (PRBB) is a flow-through zone where microorganisms degrade contaminants in groundwater. Discontinuous presence of contaminants in groundwater causes performance loss of a PRBB in removing the target contaminant. A novel enricher reactor (ER) - PRBB system was developed to treat groundwater with contaminants that reappear after an absence period. ER is an offline reactor for enriching contaminant degraders, which were used for augmenting PRBB to maintain its performance after a period of contaminant absence. The ER-PRBB concept was initially applied to remove benzene that reappeared after absence periods of 10 and 25 days. PRBBs without ER augmentation experienced performance losses of up to 15% higher than ER-PRBBs. The role of inducer compounds in the ER to enrich bacteria that can degrade a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated with an objective to minimize the use of toxic chemicals as inducers. Three inducer types were studied: individual BTEX compounds, BTEX mixture, and benzoate (a non toxic and a common intermediate for BTEX biodegradation). Complete BTEX removal was observed for degraders enriched on all three inducer types; however, the removal rates were dependent on the inducer type. Degraders enriched on toluene and BTEX had the highest degradation rates for BTEX of 0.006 to 0.014 day-1 and 0.006 to 0.012 day-1, respectively, while degraders enriched on benzoate showed the lowest degradation rates of 0.004 to 0.009 day-1. The ER-PRBB technique was finally applied to address the performance loss of a PRBB due to inhibition interactions among BTEX, when the mixture reappeared after a 10 day absence period. The ER-PRBBs experienced minimal to no performance loss, while PRBBs without ER augmentation experienced performance losses between 11% and 35%. Presence of ethanol during the BTEX absence period increased the performance loss of PRBB for benzene removal. PRBBs augmented with degraders enriched on toluene alone overcame the inhibition interaction between benzene and toluene indicating that toluene can be used as a single effective inducer in an ER. The ER-PRBB was demonstrated to be a promising remediation technique and has potential for applications to a wide range of organic contaminants.
3

Design Methodology for Permeable Reactive Barriers Combined With Monitored Natural Attenuation

Hafsi, Amine 06 June 2008 (has links)
Permeable reactive barrier (PRB) technology is increasingly considered for in situ treatment of contaminated groundwater; however, current design formulas for PRBs are limited and do not properly account for all major physical and attenuation processes driving remediation. This study focused on developing a simple methodology to design PRBs that is easy to implement while improving accuracy and being more conservative than the available design methodologies. An empirical design equation and a simple analytical design equation were obtained to calculate the thickness of a PRB capable of degrading a contaminant from a source contaminant concentration to a maximum contaminant level at a Point of compliance . Both equations integrate the fundamental components that drive the natural attenuation process of the aquifer and the reactive capacity of the PRB.The empirical design equation was derived from a dataset of random hypothetical cases that used the solutions of the PRB conceptual model (Solution I). The analytical design equation was derived from particular solutions of the model (Solution II) which the study showed fit the complex solutions of the model well. Using the hypothetical cases, the analytical equation has shown that it gives an estimated thickness of the PRB just 15 % lower or higher than the real thickness of the PRB 95 percent of the time. To calculate the design thickness of a PRB, Natural attenuation capacity of the aquifer can be estimated from the observed contaminant concentration changes along aquifer flowpaths prior to the installation of a PRB. Bench-scale or pilot testing can provide good estimates of the required residence times ( Gavaskar et al. 2000) , which will provide the reactive capacity of the PRB needed for the calculation. The results of this study suggest also that the installation location downgradient from the source of contaminant is flexible. If a PRB is installed in two different locations, it will achieve the same remediation goals. This important finding gives engineers and scientists the choice to adjust the location of their PRBs so that the overall project can be the most feasible and cost effective. / Master of Science
4

Assessment of permeable reactive barriers alternative media for the remediation of nitrate-contaminated ground-waters.

Zorgani, Abdulmutaleb Esseid. January 2013 (has links)
The increase in the contamination of ground-water (GW) with nitrates in both developing and developed countries mainly results from agricultural activities and improper sanitation systems, and is a recent phenomenon that has become a source of great health concern, particularly in regions where people rely on the ground-water as their primary water source. Due to the advantages of using Permeable Reactive Barriers (PRB) including its cost-effectiveness as well as its capability to remove or mitigate the spread of large spectrum of contaminants (including nitrates), a significant increase has been observed in the use of this subsurface treatment technology compared to other methods. However, identifying more economic and reliable reactive media to be used instead of the costly conventional PRB materials is now of key importance. Two local soils namely Berea Red Sand (BRS) and Umgeni Sand (US) were the main focus of this research. In addition to these soils, Zero Valent Iron (ZVI) was also used in this study. Through the use of batch experiments the feasibility of the nitrate reduction was investigated by five substrates including 100% ZVI, 100% BRS, 100% US, mix of 75% ZVI + 25% BRS, and mix of 50% ZVI + 50% BRS. Five concentrations of nitrate synthetic solution including 10 mg/l, 25 mg/l, 50 mg/l, 100 mg/l, and 500 mg/l were used to simulate nitrate-contaminated ground-water. All the batch experiments were performed under semi-aerobic and uncontrolled pH conditions, and only one solid/liquid ratio of 1:10 was used. The two mixes (mix of 75% ZVI + 25% BRS, and mix of 50% ZVI + 50% BRS) exhibited a nitrate removal efficiency of 100%, with all the different initial concentrations that were used with it; besides these two mixes, none of the other substrates showed this performance. 100% ZVI; however, managed complete nitrate reduction when the 10 mg/l and 25 mg/l concentrations were used. Finally, it was concluded that the benefits of using BRS in combination with other materials such as ZVI in the PRB field are promising. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.
5

The use of PRBs (permeable reactive barriers) for attenuation of cadmium and hexavalent chromium from industrial contaminated soil / Title on signature form: Use of permeable reactive barriers (PRBs) for attenuation of cadmium and hexavalent chromium from industrial contaminated soil

Meza, Maria I. January 2009 (has links)
Permeable reactive barriers are considered among the most promising technologies for contaminated soil and groundwater remediation. Zero-valent iron (ZVI), hydroxyapatite (HA), and organic compost, with (OM) and without (OMx) dextrose/sulfate were assessed in column studies for their ability to attenuate chromium (Cr) or cadmium (Cd). PVC columns were packed with the reactive media and Cr or Cd solutions were pumped through the columns at concentrations of 5, 50 and 200 mg/l. These media were also assessed for their abilities to attenuate Cr and Cd from a contaminated soil. The order of Cr removal was: ZVI > OMx > OM > HA. The ZVI treatment maintained a removal rate of > 95% throughout the study. All treatments used for Cd removal had a removal rate of 98% across all treatments. The ZVI was the only treatment capable of retaining any of the mobile soil Cr and Cd from the contaminated soil. / Department of Natural Resources and Environmental Management
6

Remobilization of trivalent chromium and the regeneration of in situ permeable reactive barriers during operation

Kaimbi, L.A. (Lapaka Albertina) January 2014 (has links)
Chromium exists largely in two oxidation states, namely hexavalent chromium (Cr(VI)) which is carcinogenic, mutagenic to living organisms including humans and trivalent chromium (Cr(III)) which is known to be 1000 times less toxic than Cr(VI). It is therefore desirable in most cases to reduce Cr(VI) to Cr(III). Various studies have been conducted on the Cr(VI) reduction process either in situ or ex situ. However in situ bioremediation using permeable reactive barrier system appears as a potential and attractive technology compared to other in situ technologies. This study was conducted to evaluate the reduction of Cr(VI) to Cr(III) in the short term and regeneration of the biological reactive barrier to achieve continuous long term operation. It was observed from the study that the chromium hydroxide Cr(OH)3(s) precipitated and thus affected the porosity and hydraulic conductivity of the barrier system. It was therefore proposed to implement a regeneration process involving remobilization of precipitated Cr(OH)3 using a dilute acid (0.1% HCl) and recover Cr(III) by electrokinetics. Lowering the pH in the reactor introduced harsh conditions which necessitated the evaluation of a possible culture shift during the regeneration phase. Microbial culture composition during bioremediation and after soil washing was evaluated using a 16S rRNA finger printing method. The microbial barrier was initially inoculated with indigenous bacterial species from dried sludge. The results presented in the phylogenic tree diagrams confirm that, after microbial barrier system operation, the well-known Cr(VI) reducers Bacillus mycoides, Lysinibacillus fusiformis and Micrococcus lylae were the predominant species in the microbial community of the barrier. The microbial barrier system successfully achieved near complete removal of Cr(VI), whereby approximately 75% Cr(VI) removal was achieved within 63 days of operation. The formation of Cr(OH)3(s) was observed in the second week of operation. After 4 weeks of operating the mesocosm under soil washing with 0.1% HCl and electrokinetics remediation with a DC voltage of 50-150 V an increase in total chromium (73%) was observed suggesting that the trapped chromium species in the mesocosm was effectively remobilized with the assumption that Cr(III) had attached to the cathode forming a white-yellow precipitate layer around the cathode. Additionally more than 95% Cr(VI) was transformed to lower toxicity Cr(III) during electrokinetics and soil washing remediation. However, one of the limitations of electrokinetics is near anode focusing effect whereby a layer of precipitate is formed around the anode that lead to the reduction of efficiency of the technology. / Dissertation (MSc)--University of Pretoria, 2014. / lk2014 / Chemical Engineering / MSc / Unrestricted
7

Non-Newtonian fluid injection into granular media

Callahan, Thomas Patrick 05 April 2011 (has links)
The process of fluid injection into granular media is relevant to a wide number of applications such as enhanced oil recovery, grouting, and the construction of permeable reactive barriers. The response of the subsurface is dependent on multiple factors such as in-situ stresses, fluid properties, flow rate, and formation type. Based on these conditions a variety of response mechanisms can be initiated ranging from simple porous infiltration to hydraulic fracturing. Currently, the mechanics of fluid injection into competent rock are well understood and can be sufficiently modeled using linear elastic fracture mechanics. Because the grains in rock formations are individually cemented together, they exhibit cohesion and are able to support tensile stresses. The linear elastic method assumes tensile failure due to stress concentrations at the fracture tip. A fracture propagates when the stress intensity factor exceeds the material toughness (Detournay, 1988) However, understanding fluid injection in cohesionless granular media presents a much larger obstacle. Currently, no theoretical models have been developed to deal with granular media displacements due to fluid injection. Difficulty arises from the complexity of fluid rheology and composition used in engineering processes, the strong coupling between fluid flow and mechanical deformation, the non-linear response of subsurface media, and the multi-scale nature of the problem. The structure of this thesis is intended to first give the reader a basic background of some of the fundamental concepts for non-Newtonian fluid flow in granular media. Fluid properties as well as some interaction mechanisms are described in relation to the injection process. Next, the results from an experimental series of injection tests are presented with a discussion of the failure/flow processes taking place. We developed a novel technique which allows us to visualize the injection process by use of a transparent Hele-Shaw cell. Specifically, we will be using polyacrylamide solutions at a variety of concentrations to study non-Newtonian effects on the response within the Hele-Shaw cell. By performing tests at a range of solution concentrations and injection rates we are to be able to identify a transition from an infiltration dominated flow regime to a fracturing dominated regime.
8

Estudo da remediação de um aquífero contaminado com sulfato e metais através de barreira reativa permeável orgânica. / Study of the remediation of an aquifer contaminated by sulfate and metals through organic permeable reactive barrier.

Trindade, Giuliano Bordin 14 September 2015 (has links)
Este trabalho teve como objetivo geral estudar a viabilidade técnica de utilizar bagaço de cana como meio reativo de barreiras reativas permeáveis (BRP) para remoção de sulfato e metais de águas subterrâneas contaminadas. O estudo baseou-se em investigação experimental, por meio de ensaios laboratoriais de coluna, e em modelagem matemática, para a qual utilizaram-se também alguns dados obtidos em um estudo de caso de uma unidade industrial contaminada com sulfato e metais. Neste local contaminado, as características hidrogeológicas e topográficas propiciam a utilização de uma barreira reativa permeável como técnica de remediação. Barreiras reativas permeáveis são uma alternativa para remediação de águas subterrâneas que vem progredindo rapidamente na última década, a partir de ensaios de bancada e coluna em laboratório para implementação em escala real em campo. Três colunas bióticas foram montadas utilizando bagaço de cana como meio reativo e um material de base poroso constituído de areia e cascalho para fornecer adequada condutividade hidráulica, com a proporção de 1:28 em massa seca. Também foi adicionado ao meio reativo um inóculo bacteriano composto por esterco bovino dissolvido. Uma quarta coluna, sem inóculo e contendo um agente biocida, compôs o experimento branco (abiótico). Uma solução sintética foi introduzida nas colunas simulando condições da água subterrânea do estudo de caso, com velocidade de Darcy em torno de 2,0x10-7 m/s composta por sulfato e metais (zinco e níquel) com concentrações de 6.000 mg/L e 15 mg/L, respectivamente. Os resultados das análises da fase líquida das colunas bióticas apresentaram: (i) média da taxa de remoção de sulfato durante todo o tempo do experimento de 49 mg/L/dia; (ii) as concentrações de Zn e Ni diminuíram de 15 mg/L para valores não detectáveis pela técnica analítica utilizada (< 0,01 mg/L); (iii) aumento do pH de 5.5-5.8 para valores entre 6,8-8,0; (iv) redução do valor do potencial de óxido redução (Eh) para valores de até -200mV. Não foram observadas reduções das concentrações de metais e sulfato na fase líquida da coluna abiótica e os valores de pH e Eh permaneceram dentro das faixas iniciais. Análises nas fases sólidas das colunas bióticas por MEV e EDS após o término do experimento identificaram a presença de Ni, Zn, S e Mn, indicando a precipitação desses metais em forma de sulfetos. Estes elementos não foram detectados na fase sólida da coluna abiótica. Assim, pôde-se inferir que toda a remoção de sulfato verificada nas colunas bióticas pode ser atribuída a redução bacteriana de sulfato. A partir das condições experimentais dos ensaios, foi realizada a modelagem e o dimensionamento da BRP. Para a estimativa da cinética de redução de sulfato, aplicou-se a solução analítica de Van Genuchten para transporte de contaminantes com degradação, obtendo-se uma taxa de decaimento de primeira ordem de 0,01 dia-1. A determinação da espessura e tempo de residência da barreira foi realizada considerando que a concentração de sulfato na saída da barreira fosse menor ou igual a 250 mg/L. O resultado do dimensionamento de uma BRP preenchida com bagaço de cana e areia nas proporções de 1:28 em massa seca resultaria em uma BRP de 7,1 m de espessura, com tempo de residência de 950 dias, no local de estudo de caso. Caso fosse utilizado o dobro da proporção de bagaço de cana e areia em massa seca (1:14), a implantação da BRP apresentar-se-ia viável, com espessura aproximada de 4 m. Através destes resultados, pôde ser comprovada a hipótese de que bagaço de cana como substrato e esterco bovino como inóculo compõem um meio reativo viável para a redução de sulfato e precipitação de metais em uma BRP. / This research had as general objective to study the technical feasibility of use sugarcane bagasse as reactive medium of permeable reactive barriers (PRB) for removal of sulfate and metals from contaminated groundwater. The study was based on experimental investigation, through laboratory column tests and by mathematical modeling, for which data of a case study of an industrial unit contaminated with sulfate and metals was used. At this contaminated unit, the hydrogeological and topographical features propitiate the utilization of a permeable reactive barrier as remediation technique. Reactive permeable barriers are an alternative to groundwater remediation that comes progressing quickly in the last decade, from bench and column tests in the laboratory to full-scale implementation in the field. Three biotic columns were assembled using bagasse as a reactive medium and a porous base material consisting of sand and gravel to provide adequate hydraulic conductivity, with the proportion of 1:28 by dry mass. It was also added to the reactive medium a bacterial inoculum consisting of dissolved cow manure. A fourth column, without inoculum, and containing a biocidal agent composed the blank experiment (abiotic). A synthetic solution was introduced in columns simulating groundwater conditions of the case study, with Darcy velocity around 2, 0x10-7 m/s, composed by sulfate and metals (zinc and nickel) with concentrations of 6,000 mg/L and 15 mg/L, respectively. The results of the analyses of the liquid phase of the biotic columns showed: (i) the average of sulfate removal rate during all the time of the experiment of 49 mg/L/day; (ii) the concentrations of Zn and Ni decreased from 15 mg/L to non-detectable values by the used analytical technique (0.01 mg/L); (iii) increase in the pH of 5.5-5.8 for values between 6.8-8.0; (iv) reduction in the value of the oxidation-reduction potential (Eh) for values up to -200mV. The reductions were not observed in concentrations of metals and sulfate in liquid phase of abiotic column and the values of pH and Eh remained within the initial tracks. Analyses on solid phases of biotic columns by SEM and EDS after experiment finalization have identified the presence of Ni, Zn, S and Mn, indicating the precipitation of these metals in the form of sulfides. These elements were not detected in the solid phase of the abiotic column. So, it might be inferred that any reduction in sulfate removal biotic columns can be attributed to bacterial sulfate reduction. Base on the experimental conditions of the tests, it was conducted the modeling and PRB dimensioning. For the sulfate reduction kinetics estimation, the analytical solution of Van Genuchten was applied for contamination degradation and transport, obtaining a first-order decay rate of 0.01 day-1. The determination of the thickness and residence time of the barrier was performed considering the concentration of sulfate in the output of the barrier being less than or equal to 250 mg/L. The result of the dimensioning of the PRB filled with bagasse and sand in 1:28 dry mass ratios would result in a PRB of 7.1 m thick, with 950 days residence time on the site of case study. If the proportion of bagasse and sand were 1:14 by dry mass (twice), the deployment of the PRB would be feasible, with approximate thickness of 4 m. Through these results, it might be concluded that the hypothesis that sugarcane bagasse as a substrate and cow manure as inoculum make up a reactive medium viable for the reduction of sulfate and precipitation of metals in a PRB.
9

Estudo da remediação de um aquífero contaminado com sulfato e metais através de barreira reativa permeável orgânica. / Study of the remediation of an aquifer contaminated by sulfate and metals through organic permeable reactive barrier.

Giuliano Bordin Trindade 14 September 2015 (has links)
Este trabalho teve como objetivo geral estudar a viabilidade técnica de utilizar bagaço de cana como meio reativo de barreiras reativas permeáveis (BRP) para remoção de sulfato e metais de águas subterrâneas contaminadas. O estudo baseou-se em investigação experimental, por meio de ensaios laboratoriais de coluna, e em modelagem matemática, para a qual utilizaram-se também alguns dados obtidos em um estudo de caso de uma unidade industrial contaminada com sulfato e metais. Neste local contaminado, as características hidrogeológicas e topográficas propiciam a utilização de uma barreira reativa permeável como técnica de remediação. Barreiras reativas permeáveis são uma alternativa para remediação de águas subterrâneas que vem progredindo rapidamente na última década, a partir de ensaios de bancada e coluna em laboratório para implementação em escala real em campo. Três colunas bióticas foram montadas utilizando bagaço de cana como meio reativo e um material de base poroso constituído de areia e cascalho para fornecer adequada condutividade hidráulica, com a proporção de 1:28 em massa seca. Também foi adicionado ao meio reativo um inóculo bacteriano composto por esterco bovino dissolvido. Uma quarta coluna, sem inóculo e contendo um agente biocida, compôs o experimento branco (abiótico). Uma solução sintética foi introduzida nas colunas simulando condições da água subterrânea do estudo de caso, com velocidade de Darcy em torno de 2,0x10-7 m/s composta por sulfato e metais (zinco e níquel) com concentrações de 6.000 mg/L e 15 mg/L, respectivamente. Os resultados das análises da fase líquida das colunas bióticas apresentaram: (i) média da taxa de remoção de sulfato durante todo o tempo do experimento de 49 mg/L/dia; (ii) as concentrações de Zn e Ni diminuíram de 15 mg/L para valores não detectáveis pela técnica analítica utilizada (< 0,01 mg/L); (iii) aumento do pH de 5.5-5.8 para valores entre 6,8-8,0; (iv) redução do valor do potencial de óxido redução (Eh) para valores de até -200mV. Não foram observadas reduções das concentrações de metais e sulfato na fase líquida da coluna abiótica e os valores de pH e Eh permaneceram dentro das faixas iniciais. Análises nas fases sólidas das colunas bióticas por MEV e EDS após o término do experimento identificaram a presença de Ni, Zn, S e Mn, indicando a precipitação desses metais em forma de sulfetos. Estes elementos não foram detectados na fase sólida da coluna abiótica. Assim, pôde-se inferir que toda a remoção de sulfato verificada nas colunas bióticas pode ser atribuída a redução bacteriana de sulfato. A partir das condições experimentais dos ensaios, foi realizada a modelagem e o dimensionamento da BRP. Para a estimativa da cinética de redução de sulfato, aplicou-se a solução analítica de Van Genuchten para transporte de contaminantes com degradação, obtendo-se uma taxa de decaimento de primeira ordem de 0,01 dia-1. A determinação da espessura e tempo de residência da barreira foi realizada considerando que a concentração de sulfato na saída da barreira fosse menor ou igual a 250 mg/L. O resultado do dimensionamento de uma BRP preenchida com bagaço de cana e areia nas proporções de 1:28 em massa seca resultaria em uma BRP de 7,1 m de espessura, com tempo de residência de 950 dias, no local de estudo de caso. Caso fosse utilizado o dobro da proporção de bagaço de cana e areia em massa seca (1:14), a implantação da BRP apresentar-se-ia viável, com espessura aproximada de 4 m. Através destes resultados, pôde ser comprovada a hipótese de que bagaço de cana como substrato e esterco bovino como inóculo compõem um meio reativo viável para a redução de sulfato e precipitação de metais em uma BRP. / This research had as general objective to study the technical feasibility of use sugarcane bagasse as reactive medium of permeable reactive barriers (PRB) for removal of sulfate and metals from contaminated groundwater. The study was based on experimental investigation, through laboratory column tests and by mathematical modeling, for which data of a case study of an industrial unit contaminated with sulfate and metals was used. At this contaminated unit, the hydrogeological and topographical features propitiate the utilization of a permeable reactive barrier as remediation technique. Reactive permeable barriers are an alternative to groundwater remediation that comes progressing quickly in the last decade, from bench and column tests in the laboratory to full-scale implementation in the field. Three biotic columns were assembled using bagasse as a reactive medium and a porous base material consisting of sand and gravel to provide adequate hydraulic conductivity, with the proportion of 1:28 by dry mass. It was also added to the reactive medium a bacterial inoculum consisting of dissolved cow manure. A fourth column, without inoculum, and containing a biocidal agent composed the blank experiment (abiotic). A synthetic solution was introduced in columns simulating groundwater conditions of the case study, with Darcy velocity around 2, 0x10-7 m/s, composed by sulfate and metals (zinc and nickel) with concentrations of 6,000 mg/L and 15 mg/L, respectively. The results of the analyses of the liquid phase of the biotic columns showed: (i) the average of sulfate removal rate during all the time of the experiment of 49 mg/L/day; (ii) the concentrations of Zn and Ni decreased from 15 mg/L to non-detectable values by the used analytical technique (0.01 mg/L); (iii) increase in the pH of 5.5-5.8 for values between 6.8-8.0; (iv) reduction in the value of the oxidation-reduction potential (Eh) for values up to -200mV. The reductions were not observed in concentrations of metals and sulfate in liquid phase of abiotic column and the values of pH and Eh remained within the initial tracks. Analyses on solid phases of biotic columns by SEM and EDS after experiment finalization have identified the presence of Ni, Zn, S and Mn, indicating the precipitation of these metals in the form of sulfides. These elements were not detected in the solid phase of the abiotic column. So, it might be inferred that any reduction in sulfate removal biotic columns can be attributed to bacterial sulfate reduction. Base on the experimental conditions of the tests, it was conducted the modeling and PRB dimensioning. For the sulfate reduction kinetics estimation, the analytical solution of Van Genuchten was applied for contamination degradation and transport, obtaining a first-order decay rate of 0.01 day-1. The determination of the thickness and residence time of the barrier was performed considering the concentration of sulfate in the output of the barrier being less than or equal to 250 mg/L. The result of the dimensioning of the PRB filled with bagasse and sand in 1:28 dry mass ratios would result in a PRB of 7.1 m thick, with 950 days residence time on the site of case study. If the proportion of bagasse and sand were 1:14 by dry mass (twice), the deployment of the PRB would be feasible, with approximate thickness of 4 m. Through these results, it might be concluded that the hypothesis that sugarcane bagasse as a substrate and cow manure as inoculum make up a reactive medium viable for the reduction of sulfate and precipitation of metals in a PRB.
10

Caractérisation d'un nouveau matériau et valorisation dans les barrières perméables réactives / Characterisation of a new material and its valorization in a permeable reactive barriers

Zakaria, Khaled 14 December 2012 (has links)
La valorisation des déchets industriels est de nos jour un défit international ayant des intérêts économiques et environnementaux. Dans ce cadre, l’entreprise Solvay travail sur la gestion de ses déchets et plus particulièrement ceux produits de la fabrication du carbonate de sodium « soude ». Ils sont actuellement stockés dans des bassins de décantation. Cependant, des contraintes règlementaires sont récemment apparues limitant ainsi la construction de nouveaux bassins. La valorisation de ces déchets est par conséquent impérative pour l’entreprise. Plusieurs voies de valorisation sont envisageables, notamment le recours à des nouveaux procédés qui permettraient d’en produire de nouveaux matériaux.En effet, un nouveau matériau issu des déchets industriels appelé « Gel d’Apatite » fait l’objet de ce travail de thèse. L’objectif est de caractériser le Gel d’Apatite et de proposer et d’étudier une voie permettant sa valorisation. Ce matériau est constitué principalement d’hydroxyapatite et de l’eau. Il se distingue par un comportement thixotropique et par sa capacité de rétention des métaux lourds. Cette dernière propriété a permis d’envisager sa valorisation dans la dépollution et la protection des nappes phréatiques. La voie étudiée dans ce travail de recherche est la valorisation du Gel d’Apatite dans les Barrières Perméables Réactives « BPR(s)»; technique passive de traitement des eaux souterraines in-situ.La finalité de ces travaux de recherche serait de dresser un cahier de charge du Gel d’Apatite et de définir un mélange conforme au mode de valorisation étudié / The valorization of industrial wastes is nowadays a worldwide challenge that offers several environmental and social interests. In some fields this valorization allows the preservation of natural resources and the releasing of spaces devoted to the wastes storage. Further, it allows developing of new innovative materials and low-cost products. Consequently industries industries have followed these guidelines. A collaborative investigation has been established with Solvay and Ecole Centrale de Lille in order to work on this topic.A new material: hydroxyapatite gel, is thus developed from non-toxic wastes in an industrial research laboratory. This material is composed by hydroxyapatite and water. It is characterized by its capacity to retain heavy metal by ion exchange. This particular characteristic led to consider its valorization in the water pollution control as the permeable reactive barrier (PRB) in particular. In deed, the permeable reactive barrier is a passive technique of in situ groundwater treatment.The results from this study were useful for a better planning of Permeable Reactive Barriers (PRB). The latter requires a high permeability to ensure groundwater flow and a high retention capacity for heavy metals

Page generated in 0.1319 seconds