For railways, risk analysis is carried out to identify hazardous situations and their consequences. Until recently, classical methods such as Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) were applied in modelling the linear and logically deterministic aspects of railway risks, safety and reliability. However, it has been proven that modern railway systems are rather complex, involving multi-dependencies between system variables and uncertainties about these dependencies. For train derailment accidents, for instance, high train speed is a common cause of failure; slip and failure of brake applications are disjoint events; failure dependency exists between the train protection and warning system and driver errors; driver errors are time dependent and there is functional uncertainty in derailment conditions. Failing to incorporate these aspects of a complex system leads to wrong estimations of the risks and safety, and, consequently, to wrong management decisions. Furthermore, a complex railway system integrates various technologies and is operated in an environment where the behaviour and failure modes of the system are difficult to model using probabilistic techniques. Modelling and quantification of the railway risk and safety problems that involve dependencies and uncertainties such as mentioned above are complex tasks.
Importance measures are useful in the ranking of components, which are significant with respect to the risk, safety and reliability of a railway system. The computation of importance measures using FTA has limitation for complex railways. ALARP (As Low as Reasonably Possible) risk acceptance criteria are widely accepted as ’\'best practice’’ in the railways. According to the ALARP approach, a tolerable region exists between the regions of intolerable and negligible risks. In the tolerable region, risk is undertaken only if a benefit is desired. In this case, one needs to have additional criteria to identify the socio-economic benefits of adopting a safety measure for railway facilities. The Life Quality Index (LQI) is a rational way of establishing a relation between the financial resources utilized to improve the safety of an engineering system and the potential fatalities that can be avoided by safety improvement. This thesis shows the application of the LQI approach to quantifying the social benefits of a number of safety management plans for a railway facility.
We apply Bayesian Networks and influence diagrams, which are extensions of Bayesian Networks, to model and assess the life safety risks associated with railways. Bayesian Networks are directed acyclic probabilistic graphical models that handle the joint distribution of random variables in a compact and flexible way. In influence diagrams, problems of probabilistic inference and decision making – based on utility functions – can be combined and optimized, especially, for systems with many dependencies and uncertainties. The optimal decision, which maximizes the total benefits to society, is obtained.
In this thesis, the application of Bayesian Networks to the railway industry is investigated for the purpose of improving modelling and the analysis of risk, safety and reliability in railways. One example application and two real world applications are presented to show the usefulness and suitability of the Bayesian Networks for the quantitative risk assessment and risk-based decision support in reference to railways.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-138087 |
Date | 24 March 2014 |
Creators | Mahboob, Qamar |
Contributors | Technische Universität Dresden, Fakultät Verkehrswissenschaften 'Friedrich List', Prof. Dr.-Ing. Jochen Trinckauf, Prof. Dr. Daniel Straub |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0032 seconds