This thesis investigates three different techniques for estimating loss given default of non-performing consumer loans. This is a contribution to a credit risk evaluation model compliant with the regulations stipulated by the Basel Accords, regulating the capital requirements of European financial institutions. First, multiple linear regression is applied, and thereafter, zero-and-one inflated beta regression is implemented in two versions, with and without Bayesian inference. The model performances confirm that modeling loss given default data is challenging, however, the result shows that the zero-and-one inflated beta regression is superior to the other models in predicting LGD. Although, it shall be recognized that all models had difficulties in distinguishing low-risk loans, while the prediction accuracy of riskier loans, resulting in larger losses, were higher. It is further recommended, in future research, to include macroeconomic variables in the models to capture economic downturn conditions as well as adopting decision trees, for example by applying machine learning. / Detta examensarbete undersöker tre olika metoder för att estimera förlusten vid fallissemang för icke-presterande konsumentlån. Detta som ett bidrag till en kreditrisksmodell i enlighet med bestämmelserna i Baselregelverken, som bland annat reglerar kapitalkraven för europeiska finansiella institut. Inledningsvis tillämpas multipel linjär regression, därefter implementeras två versioner av utvidgad betaregression, med och utan bayesiansk inferens. Resultatet bekräftar att modellering data för förlust givet fallissemang är utmanande, men visar även att den utvidgade betaregressionen utan bayesiansk inferens är bättre de andra modellerna. Det ska dock tilläggas att alla modeller visade svårigheter att estimera lån med låg risk, medan tillförlitligheten hos lån med hög risk, vilka generellt sett medför större förluster, var högre. Vidare rekommenderas det för framtida forskning att inkludera makroekonomiska variabler i modellerna för att fånga ekonomiska nedgångar samt att implementera beslutsträd, exempelvis genom applicering av maskininlärning.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-273593 |
Date | January 2020 |
Creators | Ljung, Carolina, Svedberg, Maria |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2020:086 |
Page generated in 0.0031 seconds