Thesis advisor: Jianmin Gao / Thesis advisor: Eranthie Weerapana / Cyclic peptides provide a privileged scaffold when optimizing interactions with various biological targets. Their rigidified structure decreases the entropic cost of binding by preorganizing residues in a fixed conformation, which may enhance binding affinity. These molecules occupy a larger chemical space than typical small molecule drugs and may provide good candidates for inhibiting protein-protein interactions or being able to interact with previously undruggable targets. Given the benefits of these structures we aim to develop a one-bead-one-compound peptide library for screening against relevant biological targets. Herein we describe several routes to achieving cyclic peptides through side chain interactions and head-to tail amide bond linkages. Additional considerations for the development of the on resin library such as linker strategies and sequencing methods will be discussed. / Thesis (MS) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
Identifer | oai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_104934 |
Date | January 2015 |
Creators | Blair, Lauren Elizabeth |
Publisher | Boston College |
Source Sets | Boston College |
Language | English |
Detected Language | English |
Type | Text, thesis |
Format | electronic, application/pdf |
Rights | Copyright is held by the author, with all rights reserved, unless otherwise noted. |
Page generated in 0.0025 seconds