Return to search

Anomaly Detection of Time Series Caused by International Revenue Share Fraud : Additive Model and Autoencoder Applications

In this paper, we compare the performance of two methods to find the attempts at fraud from the data provided by Sinch (formerly CLX Communications, which is a telecommunications and cloud communications platform as a service (PaaS) company). We consider the problem as finding the anomaly in a time series signal, where we ignore the duration of a single call or other features and only care about the total volume of calls in a certain period.\\ We compare Seasonal and Trend decomposition using Loess(STL) and auto-encoder-decoder under the scenario to find the anomaly in a certain period. It comes out that additive models like STL can discriminate the trending anomaly. As for auto-encoder-decoder, the anomaly can easily be found using local information, which makes the method conveniently applied. It remains a problem that unsupervised learning methods usually require manual inspection. In practical applications, we need to iterate many times with experts to find the most suitable method for that scenario. / I det här dokumentet jämför vi resultatet av två metoder för att hitta bedrägeriförsöken från data som tillhandahålls av Sinch (tidigare CLX Communications, som är ett telekommunikations- och molnkommunikations-plattform som en tjänst (PaaS)-företag). Vi betraktar problemet som att hitta anomalien i en tidsseriesignal, där vi ignorerar varaktigheten av ett enstaka samtal eller andra funktioner och tar bara hänsyn av den totala volymen samtal under en viss period. Vi jämför säsongs- och trenduppdelning med Loess(STL) och auto-encoder-decoder under scenariot för att hitta anomalien under en viss period. Det visar sig att additivmodeller som STL kan diskriminera trendavvikelsen. När det gäller auto-encoder-decoder, kan avvikelsen lätt hittas med hjälp av lokal information, vilket gör metoden Lämplig att tillämpa. Det är fortfarande ett problem att oövervakade inlärningsmetoder vanligtvis kräver manuell inspektion. I praktiska tillämpningar måste vi iterera många gånger med experter för att hitta den mest lämpliga metoden för det scenariot.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-325848
Date January 2023
CreatorsWang, Lingxiao
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:100

Page generated in 0.0082 seconds