Environmental interlinked problems such as human-induced land cover change, water scarcity, loss in soil fertility, and anthropogenic climate change are expected to affect the viability of agriculture and increase food insecurity in many developing countries. Climate change is certainly the most serious of these challenges for the twenty-first century. The poorest regions of the world – tropical West Africa included – are the most vulnerable due to their high dependence on climate and weather sensitive activities such as agriculture, and the widespread poverty that limits the institutional and economic capacities to adapt to the new stresses brought about by climate change. Climate change is already acting negatively on the poor smallholders of tropical West Africa whose livelihoods dependent mainly on rain-fed agriculture that remains the cornerstone of the economy in the region. Adaptation of the agricultural systems to climate change effects is, therefore, crucial to secure the livelihoods of these rural communities. Since information is a key for decision-making, it is important to provide well-founded information on the magnitude of the impacts in order to design appropriate and sustainable adaptation strategies.
Considering the case of agricultural production in the Republic of Benin, this study aims at using large-scale climatic predictors to assess the potential impacts of past and future climate change on agricultural productivity at a country scale in West Africa. Climate signals from large-scale circulation were used because state-of-the art regional climate models (RCM) still do not perfectly resolve synoptic and mesoscale convective processes. It was hypothesised that in rain-fed systems with low investments in agricultural inputs, yield variations are widely governed by climatic factors. Starting with pineapple, a perennial fruit crops, the study further considered some annual crops such as cotton in the group of fibre crops, maize, sorghum and rice in the group of cereals, cowpeas and groundnuts belonging to the legume crops, and cassava and yams which are root and tuber crops. Thus the selected crops represented the three known groups of photosynthetic pathways (i.e. CAM, C3, and C4 plants).
In the study, use was made of the historical agricultural yield statistics for the Republic of Benin, observed precipitation and mean near-surface air temperature data from the Climatic Research Unit (CRU TS 3.1) and the corresponding variables simulated by the regional climate model (RCM) REMO. REMO RCM was driven at its boundaries by the global climate model ECHAM 5. Simulations with different greenhouse gas concentrations (SRES-A1B and B1 emission scenarios) and transient land cover change scenarios for present-day and future conditions were considered. The CRU data were submitted to empirical orthogonal functions analysis over the north hemispheric part of Africa to obtain large-scale observed climate predictors and associated consistent variability modes. REMO RCM data for the same region were projected on the derived climate patterns to get simulated climate predictors. By means of cross-validated Model Output Statistics (MOS) approach combined with Bayesian model averaging (BMA) techniques, the observed climate predictors and the crop predictand were further on used to derive robust statistical relationships. The robust statistical crop models perform well with high goodness-of-fit coefficients (e.g. for all combined crop models: 0.49 ≤ R2 ≤ 0.99; 0.28 ≤ Brier-Skill-Score ≤ 0.90).
Provided that REMO RCM captures the main features of the real African climate system and thus is able to reproduce its inter-annual variability, the time-independent statistical transfer functions were then used to translate future climate change signal from the simulated climate predictors into attainable crop yields/crop yield changes. The results confirm that precipitation and air temperature governed agricultural production in Benin in general, and particularly, pineapple yield variations are mainly influenced by temperature. Furthermore, the projected yield changes under future anthropogenic climate change during the first-half of the 21st century amount up to -12.5% for both maize and groundnuts, and -11%, -29%, -33% for pineapple, cassava, and cowpeas respectively. Meanwhile yield gain of up to +10% for sorghum and yams, +24% for cotton, and +39% for rice are expected. Over the time period 2001 – 2050, on average the future yield changes range between -3% and -13% under REMO SRES–B1 (GHG)+LCC, -2% and -11% under REMO SRES–A1B (GHG only),and -3% and -14% under REMO SRES–A1B (GHG)+LCC for pineapple, maize, sorghum, groundnuts, cowpeas and cassava. In the meantime for yams, cotton and rice, the average yield gains lie in interval of about +2% to +7% under REMO SRES–B1 (GHG)+LCC, +0.1% and +12% under REMO SRES–A1B (GHG only), and +3% and +10% under REMO SRES–A1B (GHG)+LCC. For sorghum, although the long-term average future yield depicts a reduction there are tendencies towards increasing yields in the future. The results also reveal that the increases in mean air temperature more than the changes in precipitation patterns are responsible for the projected yield changes. As well the results suggest that the reductions in pineapple yields cannot be attributed to the land cover/land use changes across sub-Saharan Africa. The production of groundnuts and in particular yams and cotton will profit from the on-going land use/land cover changes while the other crops will face detrimental effects.
Henceforth, policymakers should take effective measures to limit the on-going land degradation processes and all other anthropogenic actions responsible for temperature increase. Biotechnological improvement of the cultivated crop varieties towards development of set of seed varieties adapted to hotter and dry conditions should be included in the breeding pipeline programs. Amongst other solutions, application of appropriate climate-smart agricultural practices and conservation agriculture are also required to offset the negative impacts of climate change in agriculture. / In vielen Entwicklungsländern gefährden Umweltprobleme wie die tiefgreifende Veränderung der Landoberfläche, Wasserknappheit, Bodendegradation und der anthropogene Klimawandel die Leistung¬sfähigkeit der Landwirtschaft und erhöhen so das Risiko von Nahrungs-mittelknappheit. Von diesen miteinander verwobenen Bedrohungen ist der Klimawandel im 21. Jahrhundert sicherlich die bedeutendste. Die höchste Vulnerabilität weisen die ärmsten Regionen der Welt – unter anderen Westafrika – auf, sowohl wegen der großen Bedeutung von klima- und wettersensitiven Wirtschaftsektoren wie der Landwirtschaft als auch wegen der verbreiteten Armut. Diese schränkt die staatlichen und wirtschaftlichen Anpassungs¬kapazitäten an die neuen Herausforderungen durch den Klimawandel ein. Westafrikanische Kleinbauern, deren Lebensunterhalt wesentlich vom traditionellen Regenfeldbau – dem Eckpfeiler der regionalen Wirtschaft – abhängt, bekommen die negativen Auswirkungen bereits zu spüren. Die Adaption der agroökonomischen Systeme an den Klimawandel ist eine unbedingte Notwendigkeit für die Sicherung der Lebensgrundlage dieser ländlichen Gebiete. Da Wissen die Basis für Entscheidungen darstellt, sind belastbare Informationen über das Ausmaß der Auswirkungen wichtig, um angemessene und nachhaltige Anpassungsstrategien zu entwickeln.
Am Beispiel der Republik Benin untersucht diese Studie das Potenzial von makroskaligen klimatischen Prädiktoren zur Erfassung und Quantifizierung des potentiellen Einflusses von beobachteten und künftigen Klimaänderungen auf die landwirtschaftliche Produktion eines westafrikanischen Landes. Die Auswirkungen der großskaligen Zirkulation wurden herangezogen, da auch moderne Regionale Klimamodelle (RCMs) Schwierigkeiten haben, klein- oder mesoskalige synoptische und insbesondere konvektive Prozesse überzeugend zu simulieren. Zugrunde liegt die Annahme, dass Schwankungen des landwirtschaftlichen Ertrags in auf Regenfeldbau basierenden landwirtschaftlichen Systemen mit geringen Kapitaleinsatz zu weiten Teilen auf klimatische Faktoren zurückzuführen sind. Untersucht werden die Ananas als perennierende Pflanze sowie einige einjährige Feldfrüchte wie Baumwolle aus der Gruppe der Faserpflanzen, die Getreidearten Mais, Sorghumhirse und Reis, die Hülsenfrüchte Augenbohne und Erdnuss sowie die Knollen- und Wurzelfrüchte Maniok und Yams. Somit repräsentieren die ausgewählten Feldfrüchte die drei bekannten Photosynthese-Wege, nämlich CAM, C3 und C4.
Die vorliegende Studie verwendet historische Ertragsstatistiken der Republik Benin, Beobachtungsdaten der Climate Research Unit für den monatlichen Niederschlag sowie die bodennahe Mitteltemperatur (CRU TS 3.1) und die entsprechenden Variablen simuliert durch das REMO RCM. Dieses Regionalmodell wird an seinen Rändern durch das globale Klimamodell ECHAM 5 angetrieben. Es werden Modellsimulationen mit unterschiedlichen Randbedingungen im Hinblick auf Treibhausgaskonzentrationen (die Szenarien SRES-B1 und SRES-A1B) und Veränderungen der Landbedeckung (LCC) berücksichtigt. Mittels Hauptkomponentenanalyse werden aus den CRU-Daten für den nordhemisphärischen Teil Afrikas Zeitreihen und räumliche Muster für großskalige Prädiktoren gewonnen. Um mit diesen konsistente Prädiktoren für die Simulationen zu erhalten, werden die Datenfelder des REMO RCMs auf die so gewonnenen Raummuster projiziert. Für die beobachteten Zeitreihen der Prädiktoren und die zeitliche Entwicklung der unterschiedlichen Feldfrüchte als Prädiktant werden mittels eines kombinierten Ansatzes aus kreuzvalidierten Model Output Statistics (MOS) und Bayesian Model Averaging (BMA) Techniken robuste statistische Zusammenhänge erfasst. Die resultierenden statistischen Modelle zeigen gute Performance, beispielsweise gilt für alle erzeugten Modelle 0,49 ≤ R² ≤ 0,99 und 0,28 ≤ Brier-Skill-Score ≤ 0,90.
Da das REMO RCM die Hauptcharakteristika des beobachteten Klimas in Afrika erzeugt und daher die interannuelle Variabilität realistisch reproduziert, können mithilfe der zeitunabhängigen statistischen Transferfunktionen Klimaänderungssignale, gewonnen aus den simulierten Prädiktoren, in zu erwartende Veränderungen der Ernteerträge übersetzt werden. Die Ergebnisse bestätigen, dass Niederschlag und bodennahe Temperatur allgemein die landwirtschaftliche Produktion bestimmen und insbesondere die Schwankungen in den Ananas¬-erträgen primär thermisch bedingt scheinen. Weiterhin finden sich unter den simulierten künftigen Klimabedingungen projizierte Ertragsänderungen von bis zu -12,5% für Mais und Erdnuss und -11% , -29% und -33% für Ananas, Maniok und Augenbohne. Zugleich werden Ertragssteigerungen von +10% für Sorghumhirse und Yams, +24% für Baumwolle und +39% für Reis projiziert. Diese Änderungen sind abhängig von den Randbedingungen. Im Mittel betragen die simulierten Änderungen der Erträge während der Periode von 2001 bis 2050 zwischen -13% und -3% für SRES-B1 + LCC, -11% und -2% für SRES-A1B sowie -14% bis -3% für SRES-A1B + LCC für Ananas, Mais, Sorghumhirse, Erdnuss, Augenbohne und Maniok. Daneben finden sich für Yams, Baumwolle und Reis Zuwächse im Ernteertrag, die in Intervallen zwischen +2% bis +7% für SRES-B1 + LCC, +0.1% bis +12% für SRES-A1B und +3% bis +10% für SRES-A1B + LCC liegen. Obwohl die durchschnittliche Veränderung im Ertrag der Sorghumhirse negativ ist, lassen sich auch Tendenzen hin zu positiven Veränderungen feststellen. Die Ergebnisse zeigen zudem, dass die projizierte Zunahme der mittleren Lufttemperatur die simulierten Ernteerträge stärker beeinflusst als Veränderungen in den Niederschlagsmustern. Weiterhin scheint im Fall der Ananas der simulierte Rückgang im Ertrag nicht auf Veränderungen bei Landnutzung oder Landoberflächenbedeckung im subsaharischen Afrika zurückführbar. Die Erdnuss- und insbesondere Yams- und Baumwollerzeugung werden von den Veränderungen in der Landoberflächenbedeckung, die für die übrigen Feldfrüchte nachteilige Effekte bedeuten, profitieren.
Zukünftig sollten politische Entscheidungsträger wirksame Maßnahmen einleiten, um die fortschreitende Landdegradation sowie alle anderen anthropogenen Prozesse, die zur globalen Erwärmung beitragen, einzuschränken. Biotechnologische Verbesserungen der verwendeten Nutzpflanzen, um an heißere und trockenere Bedingungen angepasste Varianten zu erzeugen, sollten in die bestehenden Aufzuchtprogramme integriert werden. Weiterhin sind unter anderem die Anwendung von geeigneten, klimaintelligenten landwirtschaftlichen Verfahren sowie eine nachhaltige Agrarwirtschaft notwendig, um die Schäden des Klimawandels auf die Landwirtschaft auszugleichen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:12288 |
Date | January 2015 |
Creators | Awoye, Oyémonbadé Hervé Rodrigue |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0043 seconds