• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 29
  • 17
  • Tagged with
  • 81
  • 71
  • 37
  • 37
  • 37
  • 35
  • 30
  • 29
  • 25
  • 17
  • 16
  • 14
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Climate change assessment in Southeast Asia and implications for agricultural production in Vietnam / Der Klimawandel : Beurteilung in Südostasien und Implikationen für die landwirtschaftliche Produktion in Vietnam

Tran, Nam Binh January 2011 (has links) (PDF)
Seit vielen Jahren ist die Erforschung von Klimawandel und -schwankungen das zentrale Thema der Klimatologie. Besonderes deutlich wird dies anhand der IPCC-Berichte, ebenso wie der zahlreichen Einzelstudien zur Entwicklung des Klimas auf unterschiedlichsten raum-zeitlichen Skalen. Insbesondere seit den 1980er Jahren befassen sich zahlreiche Forschungsgruppen weltweit mit der systematischen Sammlung, Aufbereitung und auch Auswertung von Klimadaten. Diese Datengrundlage erlaubt Analysen zur Entwicklung der globalen Lufttemperatur, des Niederschlags und anderer Klimaelemente (Jones et al., 1986; Hansen und Lebedeff, 1987; Vinnikov et al., 1987, 1990). Das wichtigste übergreifende Ergebnis dieser Untersuchungen ist die Feststellung einer globalen Erwärmung während des 20. Jahrhunderts, die sich in den beiden letzten Jahrzehnten besonders intensivierte. Abschätzungen über die Art und Stärke des Klimawandels auf größeren, planungsrelevanten Massstäben sind jedoch nach wie vor mit großen Unsicherheiten verbunden. Für eine detailliertere Erforschung der Auswirkungen der globalen Erwärmung auf regionaler oder gar lokaler Ebene besteht daher noch großer Forschungsbedarf. In dieser Dissertation wird zu diesem Zweck ein statistischer Ansatz verfolgt. Dieser erlaubt die Identifikation systematischer Unterschiede zwischen den Ausprägungen klimatologischer Feldgrößen (bodennahe Lufttemperatur und Niederschlag) wie sie von sogenannten General Circulation Models (GCMs) simuliert werden im Vergleich zu den betreffenden Parametern aus Beobachtungsdaten. Als Beobachtungsdaten werden die NCEP Reanalysen, die statistisch interpolierten Datensätze der CRU sowie Stationsdaten aus Vietnam verwendet. Hierbei zeigt sich, dass die aktuellen Klimamodelle die räumlichen Muster der betrachteten Variablen in befriedigender Weise reproduzieren. Die Analyse des regionalen Klimawandels in Südost-Asien erfolgt durch die Auswertung von Klimamodellrechnungen. Diese wurden von verschiedenen GCMs durchgeführt, wobei unterschiedliche Annahmen über die zukünftigen Treibhausgasemissionen berücksichtigt wurden. Der Fokus dieser Dissertation ist die Analyse der projizierten zeitlichen Entwicklung von bodennaher Temperatur und Niederschlag im 21. Jahrhundert. Hierbei werden sowohl jährliche als auch saisonale Mittelwerte bzw. Summen berücksichtigt. Neben diesen rein physikalisch-klimatologischen Betrachtungen behandelt diese Dissertation auch einen angewandten Aspekt, nämlich den Impakt des Klimawandels auf die Landwirtschaft, exemplarisch untersucht am Beispiel Vietnams. Für die Abschätzung der Vulnerabilität dieses essentiellen Wirtschaftsbereiches wird ein statistisches Modell entwickelt in das an klimatischen Parametern die bodennahe temperatur sowie der Niederschlag einfliessen. Diese Untersuchung leistet damit einen wichtigen Beitrag zum Wissenstand über die Auswirkungen des Klimawandels in den niederen Breiten. Die sozio-ökonomische Entwicklung jedes Staates der Erde wird von den Folgen des Klimawandels beeinflusst, allerdings variiert der Grad der Beeinträchtigung erheblich. Vermutlich werden Entwicklungsländer wie Vietnam die Auswirkungen des Klimawandels besonders stark zu spüren bekommen. Die Ursachen für diese hohe Vulnerabilität liegen unter anderem in der Wirtschaftsstruktur: der allgemein hohe Stellenwert natürlicher Ressourcen und eine geringe Diversität verringern hier die Möglichkeiten zur Adaption an die beobachteten und projizierten Veränderungen. Die vorliegende Dissertation gliedert sich wie folgt: In Kapitel 1 stellt eine allgemeine Einführung zur Thematik dar. Die Begriffe Klima und Klimawandel sowie einige übliche Modelle zum Klimawandel, verbunden mit einer Abwägung der spezifischen Vor- und Nachteile, werden erläutert. Kapitel 2 beschäftigt sich mit der Methodik. Hier werden die räumliche Interpolation sowie die angewendeten explorativen und inferentiellen statistischen Verfahren diskutiert. Die Kapitel 3 und 4 beschreiben die Datengrundlage und die betrachtete Region. Im Kapitel 5 werden die Untersuchungsergebnisse dargelegt. In Kapitel 6 erfolgt die Abschlussbetrachtung und ein Ausblick auf die Zukunft. Am Ende der Dissertation finden sich die verwendeten Quellen sowie ein Appendix mit landwirtschaftlichen Daten. / For many years, the study of climatic changes and variations has become the main objective of climatic research, as has been appreciated in the IPCC's reports and several publications regarding climatic evolution on different space-time scales. Since the 80's, many research groups have generated the extensive database from which the analysis of temperature, precipitation and other climatic parameters has been performed on a global scale (Jones et al., 1986; Hansen and Lebedeff, 1987, 1988; Vinnikov et al., 1987, 1990). The most important result of these research projects is the evidence of global warming during the 20th century, especially in the last two decades. However, numerous challenges still exist about the structure and dimension of the climatic change on a considerable scale. Therefore, it is necessary to carry out studies on a local and regional scale that allow for a more precise evaluation of the global warming phenomenon. A statistical analysis approach was developed to identify systematic differences between large-scale climatic variable from the General Circulation Models (GCM), NCEP, CRU re-analysis data set and climatic parameters (temperature and precipitation data). Models are able to satisfactorily reproduce the spatial patterns of the regional temperature and precipitation field. The response of the climate system to various emission scenario simulated by the GCM was used to analyze and predict the local climate change. The main objective of this study is to analysis the time evolution of the annual and seasonal temperature and precipitation during the 21st century and in order to contribute to our knowledge of temperature and precipitation trends over the century on a regional scale, not only in Southeast Asia but also in Vietnam; the study focuses to develop a dynamical – statistical model describing the relationship between the major climate variation and agricultural production in Vietnam. This study will be an important contribution to the present-day assessment of climate change impacts in the low latitudes. Regional scenarios of climate change, including both rainfall and mean temperature were then used to assess the impact of climate change on crop production in the region in order to evaluate the vulnerability of the system to global warming. Climate change has adverse impacts on the socio - economic development of all nations. But the degree of the impact will vary across nations. It is expected that changes in the earth's climate will impact on developing countries like Vietnam, in particular, hardest because their economies are strongly dependent on crude forms of natural resources and their economic structure is less flexible to adjust to such drastic changes. In Chapter 1: Introduction and background I describe in general terms climate, climate change, climate change model with benefits and problems. Chapter 2: methodology discusses the methods including interpolation, validation, clustering, correlation and regression which were applied in the study. Chapter 3 and chapter 4 describe the database and study area. The most important is chapter 5 Results. The last is chapter 6 Conclusion and outlook followed by the reference list and an appendix.
2

Implications of future climate change on agricultural production in tropical West Africa: evidence from the Republic of Benin / Auswirkungen des zukünftigen Klimawandels auf die landwirtschaftliche Produktion im tropischen West Afrika: eine Fallstudie für die Republik Benin

Awoye, Oyémonbadé Hervé Rodrigue January 2015 (has links) (PDF)
Environmental interlinked problems such as human-induced land cover change, water scarcity, loss in soil fertility, and anthropogenic climate change are expected to affect the viability of agriculture and increase food insecurity in many developing countries. Climate change is certainly the most serious of these challenges for the twenty-first century. The poorest regions of the world – tropical West Africa included – are the most vulnerable due to their high dependence on climate and weather sensitive activities such as agriculture, and the widespread poverty that limits the institutional and economic capacities to adapt to the new stresses brought about by climate change. Climate change is already acting negatively on the poor smallholders of tropical West Africa whose livelihoods dependent mainly on rain-fed agriculture that remains the cornerstone of the economy in the region. Adaptation of the agricultural systems to climate change effects is, therefore, crucial to secure the livelihoods of these rural communities. Since information is a key for decision-making, it is important to provide well-founded information on the magnitude of the impacts in order to design appropriate and sustainable adaptation strategies. Considering the case of agricultural production in the Republic of Benin, this study aims at using large-scale climatic predictors to assess the potential impacts of past and future climate change on agricultural productivity at a country scale in West Africa. Climate signals from large-scale circulation were used because state-of-the art regional climate models (RCM) still do not perfectly resolve synoptic and mesoscale convective processes. It was hypothesised that in rain-fed systems with low investments in agricultural inputs, yield variations are widely governed by climatic factors. Starting with pineapple, a perennial fruit crops, the study further considered some annual crops such as cotton in the group of fibre crops, maize, sorghum and rice in the group of cereals, cowpeas and groundnuts belonging to the legume crops, and cassava and yams which are root and tuber crops. Thus the selected crops represented the three known groups of photosynthetic pathways (i.e. CAM, C3, and C4 plants). In the study, use was made of the historical agricultural yield statistics for the Republic of Benin, observed precipitation and mean near-surface air temperature data from the Climatic Research Unit (CRU TS 3.1) and the corresponding variables simulated by the regional climate model (RCM) REMO. REMO RCM was driven at its boundaries by the global climate model ECHAM 5. Simulations with different greenhouse gas concentrations (SRES-A1B and B1 emission scenarios) and transient land cover change scenarios for present-day and future conditions were considered. The CRU data were submitted to empirical orthogonal functions analysis over the north hemispheric part of Africa to obtain large-scale observed climate predictors and associated consistent variability modes. REMO RCM data for the same region were projected on the derived climate patterns to get simulated climate predictors. By means of cross-validated Model Output Statistics (MOS) approach combined with Bayesian model averaging (BMA) techniques, the observed climate predictors and the crop predictand were further on used to derive robust statistical relationships. The robust statistical crop models perform well with high goodness-of-fit coefficients (e.g. for all combined crop models: 0.49 ≤ R2 ≤ 0.99; 0.28 ≤ Brier-Skill-Score ≤ 0.90). Provided that REMO RCM captures the main features of the real African climate system and thus is able to reproduce its inter-annual variability, the time-independent statistical transfer functions were then used to translate future climate change signal from the simulated climate predictors into attainable crop yields/crop yield changes. The results confirm that precipitation and air temperature governed agricultural production in Benin in general, and particularly, pineapple yield variations are mainly influenced by temperature. Furthermore, the projected yield changes under future anthropogenic climate change during the first-half of the 21st century amount up to -12.5% for both maize and groundnuts, and -11%, -29%, -33% for pineapple, cassava, and cowpeas respectively. Meanwhile yield gain of up to +10% for sorghum and yams, +24% for cotton, and +39% for rice are expected. Over the time period 2001 – 2050, on average the future yield changes range between -3% and -13% under REMO SRES–B1 (GHG)+LCC, -2% and -11% under REMO SRES–A1B (GHG only),and -3% and -14% under REMO SRES–A1B (GHG)+LCC for pineapple, maize, sorghum, groundnuts, cowpeas and cassava. In the meantime for yams, cotton and rice, the average yield gains lie in interval of about +2% to +7% under REMO SRES–B1 (GHG)+LCC, +0.1% and +12% under REMO SRES–A1B (GHG only), and +3% and +10% under REMO SRES–A1B (GHG)+LCC. For sorghum, although the long-term average future yield depicts a reduction there are tendencies towards increasing yields in the future. The results also reveal that the increases in mean air temperature more than the changes in precipitation patterns are responsible for the projected yield changes. As well the results suggest that the reductions in pineapple yields cannot be attributed to the land cover/land use changes across sub-Saharan Africa. The production of groundnuts and in particular yams and cotton will profit from the on-going land use/land cover changes while the other crops will face detrimental effects. Henceforth, policymakers should take effective measures to limit the on-going land degradation processes and all other anthropogenic actions responsible for temperature increase. Biotechnological improvement of the cultivated crop varieties towards development of set of seed varieties adapted to hotter and dry conditions should be included in the breeding pipeline programs. Amongst other solutions, application of appropriate climate-smart agricultural practices and conservation agriculture are also required to offset the negative impacts of climate change in agriculture. / In vielen Entwicklungsländern gefährden Umweltprobleme wie die tiefgreifende Veränderung der Landoberfläche, Wasserknappheit, Bodendegradation und der anthropogene Klimawandel die Leistung¬sfähigkeit der Landwirtschaft und erhöhen so das Risiko von Nahrungs-mittelknappheit. Von diesen miteinander verwobenen Bedrohungen ist der Klimawandel im 21. Jahrhundert sicherlich die bedeutendste. Die höchste Vulnerabilität weisen die ärmsten Regionen der Welt – unter anderen Westafrika – auf, sowohl wegen der großen Bedeutung von klima- und wettersensitiven Wirtschaftsektoren wie der Landwirtschaft als auch wegen der verbreiteten Armut. Diese schränkt die staatlichen und wirtschaftlichen Anpassungs¬kapazitäten an die neuen Herausforderungen durch den Klimawandel ein. Westafrikanische Kleinbauern, deren Lebensunterhalt wesentlich vom traditionellen Regenfeldbau – dem Eckpfeiler der regionalen Wirtschaft – abhängt, bekommen die negativen Auswirkungen bereits zu spüren. Die Adaption der agroökonomischen Systeme an den Klimawandel ist eine unbedingte Notwendigkeit für die Sicherung der Lebensgrundlage dieser ländlichen Gebiete. Da Wissen die Basis für Entscheidungen darstellt, sind belastbare Informationen über das Ausmaß der Auswirkungen wichtig, um angemessene und nachhaltige Anpassungsstrategien zu entwickeln. Am Beispiel der Republik Benin untersucht diese Studie das Potenzial von makroskaligen klimatischen Prädiktoren zur Erfassung und Quantifizierung des potentiellen Einflusses von beobachteten und künftigen Klimaänderungen auf die landwirtschaftliche Produktion eines westafrikanischen Landes. Die Auswirkungen der großskaligen Zirkulation wurden herangezogen, da auch moderne Regionale Klimamodelle (RCMs) Schwierigkeiten haben, klein- oder mesoskalige synoptische und insbesondere konvektive Prozesse überzeugend zu simulieren. Zugrunde liegt die Annahme, dass Schwankungen des landwirtschaftlichen Ertrags in auf Regenfeldbau basierenden landwirtschaftlichen Systemen mit geringen Kapitaleinsatz zu weiten Teilen auf klimatische Faktoren zurückzuführen sind. Untersucht werden die Ananas als perennierende Pflanze sowie einige einjährige Feldfrüchte wie Baumwolle aus der Gruppe der Faserpflanzen, die Getreidearten Mais, Sorghumhirse und Reis, die Hülsenfrüchte Augenbohne und Erdnuss sowie die Knollen- und Wurzelfrüchte Maniok und Yams. Somit repräsentieren die ausgewählten Feldfrüchte die drei bekannten Photosynthese-Wege, nämlich CAM, C3 und C4. Die vorliegende Studie verwendet historische Ertragsstatistiken der Republik Benin, Beobachtungsdaten der Climate Research Unit für den monatlichen Niederschlag sowie die bodennahe Mitteltemperatur (CRU TS 3.1) und die entsprechenden Variablen simuliert durch das REMO RCM. Dieses Regionalmodell wird an seinen Rändern durch das globale Klimamodell ECHAM 5 angetrieben. Es werden Modellsimulationen mit unterschiedlichen Randbedingungen im Hinblick auf Treibhausgaskonzentrationen (die Szenarien SRES-B1 und SRES-A1B) und Veränderungen der Landbedeckung (LCC) berücksichtigt. Mittels Hauptkomponentenanalyse werden aus den CRU-Daten für den nordhemisphärischen Teil Afrikas Zeitreihen und räumliche Muster für großskalige Prädiktoren gewonnen. Um mit diesen konsistente Prädiktoren für die Simulationen zu erhalten, werden die Datenfelder des REMO RCMs auf die so gewonnenen Raummuster projiziert. Für die beobachteten Zeitreihen der Prädiktoren und die zeitliche Entwicklung der unterschiedlichen Feldfrüchte als Prädiktant werden mittels eines kombinierten Ansatzes aus kreuzvalidierten Model Output Statistics (MOS) und Bayesian Model Averaging (BMA) Techniken robuste statistische Zusammenhänge erfasst. Die resultierenden statistischen Modelle zeigen gute Performance, beispielsweise gilt für alle erzeugten Modelle 0,49 ≤ R² ≤ 0,99 und 0,28 ≤ Brier-Skill-Score ≤ 0,90. Da das REMO RCM die Hauptcharakteristika des beobachteten Klimas in Afrika erzeugt und daher die interannuelle Variabilität realistisch reproduziert, können mithilfe der zeitunabhängigen statistischen Transferfunktionen Klimaänderungssignale, gewonnen aus den simulierten Prädiktoren, in zu erwartende Veränderungen der Ernteerträge übersetzt werden. Die Ergebnisse bestätigen, dass Niederschlag und bodennahe Temperatur allgemein die landwirtschaftliche Produktion bestimmen und insbesondere die Schwankungen in den Ananas¬-erträgen primär thermisch bedingt scheinen. Weiterhin finden sich unter den simulierten künftigen Klimabedingungen projizierte Ertragsänderungen von bis zu -12,5% für Mais und Erdnuss und -11% , -29% und -33% für Ananas, Maniok und Augenbohne. Zugleich werden Ertragssteigerungen von +10% für Sorghumhirse und Yams, +24% für Baumwolle und +39% für Reis projiziert. Diese Änderungen sind abhängig von den Randbedingungen. Im Mittel betragen die simulierten Änderungen der Erträge während der Periode von 2001 bis 2050 zwischen -13% und -3% für SRES-B1 + LCC, -11% und -2% für SRES-A1B sowie -14% bis -3% für SRES-A1B + LCC für Ananas, Mais, Sorghumhirse, Erdnuss, Augenbohne und Maniok. Daneben finden sich für Yams, Baumwolle und Reis Zuwächse im Ernteertrag, die in Intervallen zwischen +2% bis +7% für SRES-B1 + LCC, +0.1% bis +12% für SRES-A1B und +3% bis +10% für SRES-A1B + LCC liegen. Obwohl die durchschnittliche Veränderung im Ertrag der Sorghumhirse negativ ist, lassen sich auch Tendenzen hin zu positiven Veränderungen feststellen. Die Ergebnisse zeigen zudem, dass die projizierte Zunahme der mittleren Lufttemperatur die simulierten Ernteerträge stärker beeinflusst als Veränderungen in den Niederschlagsmustern. Weiterhin scheint im Fall der Ananas der simulierte Rückgang im Ertrag nicht auf Veränderungen bei Landnutzung oder Landoberflächenbedeckung im subsaharischen Afrika zurückführbar. Die Erdnuss- und insbesondere Yams- und Baumwollerzeugung werden von den Veränderungen in der Landoberflächenbedeckung, die für die übrigen Feldfrüchte nachteilige Effekte bedeuten, profitieren. Zukünftig sollten politische Entscheidungsträger wirksame Maßnahmen einleiten, um die fortschreitende Landdegradation sowie alle anderen anthropogenen Prozesse, die zur globalen Erwärmung beitragen, einzuschränken. Biotechnologische Verbesserungen der verwendeten Nutzpflanzen, um an heißere und trockenere Bedingungen angepasste Varianten zu erzeugen, sollten in die bestehenden Aufzuchtprogramme integriert werden. Weiterhin sind unter anderem die Anwendung von geeigneten, klimaintelligenten landwirtschaftlichen Verfahren sowie eine nachhaltige Agrarwirtschaft notwendig, um die Schäden des Klimawandels auf die Landwirtschaft auszugleichen.
3

Combined effects of climate change and extreme events on plants, arthropods and their interactions / Kombinierte Effekte von Klimawandel und Extremereignissen auf Pflanzen, Arthropoden und ihre Interaktionen

Leingärtner, Annette January 2013 (has links) (PDF)
I. Global climate change directly and indirectly influences biotic and abiotic components of ecosystems. Changes in abiotic ecosystem components caused by climate change comprise temperature increases, precipitation changes and more frequently occurring extreme events. Mediated by these abiotic changes, biotic ecosystem components including all living organisms will also change. Expected changes of plants and animals are advanced phenologies and range shifts towards higher latitudes and altitudes which presumably induce changes in species interactions and composition. Altitudinal gradients provide an optimal opportunity for climate change studies, because they serve as natural experiments due to fast changing climatic conditions within short distances. In this dissertation two different approaches were conducted to reveal species and community responses to climate change. First, species richness and community trait analyses along an altitudinal gradient in the Bavarian Alps (chapters II, III) and second, climate change manipulation experiments under different climatic contexts (chapters IV, V, IV). II. We performed biodiversity surveys of butterfly and diurnal moth species on 34 grassland sites along an altitudinal gradient in the National Park Berchtesgaden. Additionally, we analysed the dominance structure of life-history traits in butterfly assemblages along altitude. Species richness of butterflies and diurnal moths decreased with increasing altitude. The dominance of certain life-history-traits changed along the altitudinal gradient with a higher proportion of larger-winged species and species with higher egg numbers towards higher altitudes. However, the mean egg maturation time, population density and geographic distribution within butterfly assemblages decreased with increasing altitude. Our results indicate that butterfly assemblages were mainly shaped by environmental filtering. We conclude that butterfly assemblages at higher altitudes will presumably lack adaptive capacity to future climatic conditions, because of specific trait combinations. III. In addition to butterfly and diurnal moth species richness we also studied plant species richness in combination with pollination type analyses along the altitudinal gradient. The management type of the alpine grasslands was also integrated in the analyses to detect combined effects of climate and management on plant diversity and pollination type. Plant species richness was highest at intermediate altitudes, whereby the management type influenced the plant diversity with more plant species at grazed compared to mown or non-managed grasslands. The pollination type was affected by both the changing climate along the gradient and the management type. These results suggest that extensive grazing can maintain high plant diversity along the whole altitudinal gradient. With ongoing climate change the diversity peak of plants may shift upwards, which can cause a decrease in biodiversity due to reduced grassland area but also changes in species composition and adaptive potential of pollination types. IV. We set up manipulation experiments on 15 grassland sites along the altitudinal gradient in order to determine the combined effects of extreme climatic events (extreme drought, advanced and delayed snowmelt) and elevation on the nutritional quality and herbivory rates of alpine plants. The leaf CN (carbon to nitrogen) ratio and the plant damage through herbivores were not significantly affected by the simulated extreme events. However, elevation influenced the CN ratios and herbivory rates of alpine plants with contrasting responses between plant guilds. Furthermore, we found differences in nitrogen concentrations and herbivory rates between grasses, legumes and forbs, whereas legumes had the highest nitrogen concentrations and were damaged most. Additionally, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Contrasting altitudinal responses of grasses, legumes and forbs presumably can change the dominance structure among these plant guilds with ongoing climate change. V. In this study we analysed the phenological responses of grassland species to an extreme drought event, advanced and delayed snowmelt along the altitudinal gradient. Advanced snowmelt caused an advanced beginning of flowering, whereas this effect was more pronounced at higher than at lower altitudes. Extreme drought and delayed snowmelt had rather low effects on the flower phenology and the responses did not differ between higher and lower sites. The strongest effect influencing flower phenology was altitude, with a declining effect through the season. The length of flowering duration was not significantly influenced by treatments. Our data suggest that plant species at higher altitudes may be more affected by changes in snowmelt timing in contrast to lowland species, as at higher altitudes more severe changes are expected. However, the risk of extreme drought events on flowering phenology seems to be low. VI. We established soil-emergence traps on the advanced snowmelt and control treatment plots in order to detect possible changes in abundances and emergence phenologies of five arthropod orders due to elevation and treatment. Additionally, we analysed the responses of Coleoptera species richness to elevation and treatment. We found that the abundance and species richness of Coleoptera increased with elevation as well as the abundance of Diptera. However, the abundance of Hemiptera decreased with elevation and the abundances of Araneae and Hymenoptera showed no elevational patterns. The advanced snowmelt treatment increased the abundances of Araneae and Hymenoptera. The emergence of soil-hibernating arthropods was delayed up to seven weeks at higher elevations, whereas advanced snowmelt did not influence the emergence phenology of arthropods immediately after snowmelt. With climate change earlier snowmelt will occur more often, which especially will affect soil-hibernating arthropods in alpine regions and may cause desynchronisations between species interactions. VII. In conclusion, we showed that alpine ecosystems are sensitive towards changing climate conditions and extreme events and that many alpine species in the Bavarian Alps are endangered. Many alpine species could exist under warmer climatic conditions, however they are expected to be outcompeted by more competitive lowland species. Furthermore, host-parasite or predator-prey interactions can be disrupted due to different responses of certain guilds to climate change. Understanding and predicting the complex dynamics and potential risks of future climate change remains a great challenge and therefore further studies analysing species and community responses to climate change are needed. / I. Der globale Klimawandel beeinflusst direkt und indirekt biotische und abiotische Komponenten der Ökosysteme. Durch Klimawandel verursachte Veränderungen in den abiotischen Komponenten der Ökosysteme umfassen Temperaturanstiege, Veränderungen im Niederschlag und häufiger auftretende Extremereignisse. Als Folge dieser abiotischen Veränderungen, werden sich auch die biotischen Komponenten der Ökosysteme, die alle lebenden Organismen einschließen, verändern. Voraussichtliche Veränderungen bei Pflanzen und Tieren sind vorverlegte Phänologien und Verbreitungsverschiebungen in Richtung höherer Breitengrade und Höhenlagen, was möglicherweise Veränderungen von Interaktionen zwischen Arten und in der Artzusammensetzung verursacht. Höhengradienten bieten durch sich schnell verändernde klimatische Bedingungen innerhalb kurzer Distanzen eine optimale Möglichkeit für Klimawandelstudien im Freiland. In dieser Dissertation wurden zwei unterschiedliche Versuchsansätze genutzt, um die Reaktionen von Arten und Artengemeinschaften auf den Klimawandel zu untersuchen: erstens Analysen zum Artenreichtum und zu Merkmalen innerhalb von Artengemeinschaften entlang eines Höhengradienten in den Bayerischen Alpen (Kapitel II, III) und zweitens Manipulationsexperimente zur Simulation von Klimawandel bei unterschiedlichen klimatischen Bedingungen (Kapitel IV, V, VI). II. Wir haben Biodiversitätsaufnahmen von Schmetterlings- und tagaktiven Nachtfalterarten entlang eines Höhengradienten im Nationalpark Berchtesgaden durchgeführt. Zusätzlich haben wir die Dominanzstruktur von Life-History-Merkmalen in Schmetterlingsgesellschaften entlang des Höhengradienten analysiert. Der Artenreichtum von Schmetterlingen und tagaktiven Nachtfaltern nahm mit zunehmender Höhe ab. Die Dominanz von bestimmten Life-History-Merkmalen veränderte sich entlang des Höhengradienten. Zum Beispiel fanden wir einen höheren Anteil an Arten mit größeren Flügeln und eine größere Anzahl an Eiern in höheren Lagen. Die mittlere Eireifezeit, Populationsdichte und geographische Verbreitung von Schmetterlingsgesellschaften nahm mit steigender Höhe ab. Unsere Ergebnisse deuten darauf hin, dass Schmetterlingsgesellschaften hauptsächlich durch den Filtereffekt der Umwelt geformt werden. Wir schlussfolgern, dass sich bestimmte Merkmalskombinationen von Schmetterlingsgesellschaften in höheren Lagen möglicherweise ungünstig auf die Anpassungskapazität an zukünftige klimatische Veränderungen auswirken. III. Zusätzlich zum Artenreichtum von Schmetterlingen und tagaktiven Nachtfaltern haben wir auch den Artenreichtum von Pflanzen in Kombination mit Analysen zu Bestäubungstypen entlang des Höhengradienten untersucht. Die Bewirtschaftungsform der alpinen Grasländer wurde in die Analysen integriert, um kombinierte Auswirkungen von Klima und Bewirtschaftungsform auf die Pflanzendiversität und den Bestäubungstyp zu erfassen. Der Artenreichtum von Pflanzen war auf mittleren Höhen am größten, wobei die Bewirtschaftungsform die Pflanzendiversität beeinflusste. Es kamen mehr Pflanzenarten auf beweideten im Vergleich zu gemähten oder nicht bewirtschafteten Wiesen vor. Der Bestäubungstyp wurde sowohl durch das sich verändernde Klima entlang des Gradienten als auch durch die Bewirtschaftungsform beeinflusst. Unsere Ergebnisse lassen vermuten, dass extensive Beweidung eine hohe Pflanzendiversität entlang des gesamten Höhengradienten erhalten kann. Mit fortschreitendem Klimawandel könnte sich der Bereich mit höchster Pflanzendiversität nach oben verschieben, was zu einem Biodiversitätsverlust durch eine Abnahme an Grasflächen führen könnte, aber auch zu Veränderungen in der Artenzusammensetzung und dem Anpassungspotential von Bestäubungstypen. IV. Wir simulierten Extremereignisse (extreme Dürre, frühere und spätere Schneeschmelze) auf 15 Grasflächen entlang des Höhengradienten, um kombinierte Effekte von extremen klimatischen Ereignissen und Höhenlage auf die Futterqualität und den Blattfraß von alpinen Pflanzen zu untersuchen. Das Verhältnis von Kohlenstoff zu Stickstoff (CN) in Blättern und die Fraßschäden durch Pflanzenfresser wurden durch die simulierten Extremereignisse nicht signifikant beeinflusst. Dagegen beeinflusste die Höhenlage das CN-Verhältnis und die Herbivorieraten von alpinen Pflanzen mit entgegengesetzten Reaktionen unter den Pflanzengruppen. Des Weiteren haben wir Unterschiede in den Stickstoffkonzentrationen und Herbivorieraten zwischen Gräsern, Leguminosen und krautigen Pflanzen gefunden, wobei die Leguminosen die höchsten Stickstoffkonzentrationen aufwiesen und am stärksten angefressen waren. Zusätzlich stiegen die CN-Verhältnisse und die Fraßschäden während der Vegetationsperiode an, was auf eine Abnahme der Futterqualität im Verlauf der Vegetationsperiode hindeutet. Entgegengesetzte Muster von Gräsern, Leguminosen und krautigen Pflanzen über die Höhe können möglicherweise die Dominanzstruktur zwischen diesen Pflanzengruppen mit fortschreitendem Klimawandel verändern. V. In dieser Studie haben wir die phänologischen Reaktionen von Graslandarten auf ein extremes Dürreereignis, eine frühere und eine spätere Schneeschmelze entlang des Höhengradienten, analysiert. Die frühere Schneeschmelze bewirkte einen früheren Blühbeginn, wobei dieser Effekt auf höheren Lagen ausgeprägter war als auf tieferen Lagen. Extreme Dürre und spätere Schneeschmelze hatten eher geringe Auswirkungen auf die Blühphänologie und die Auswirkungen unterschieden sich nicht zwischen höher und tiefer gelegenen Flächen. Am stärksten würde die Blühphänologie von der Höhenlage beeinflusst wobei sich der Effekt im Verlauf der Vegetationsperiode verringerte. Die Länge der Blühdauer wurde durch die Simulationen nicht signifikant beeinflusst. Unsere Ergebnisse deuten darauf hin, dass Pflanzenarten in höheren Lagen stärker durch Veränderungen des Zeitpunktes der Schneeschmelze beeinflusst werden als Tieflandarten, weil in höheren Lagen stärkere Veränderungen erwartet werden. Das Risiko von extremer Dürre für die Blühphänologie scheint aber gering zu sein. VI. Wir untersuchten Effekte der Höhenlage und früherer Schneeschmelze auf Häufigkeiten und Schlupfphänologien fünf verschiedener Arthropodenordnungen. Dazu installierten wir Bodenphotoeklektoren auf Flächen mit früherer Schneeschmelze und Kontrollflächen. Außerdem analysierten wir die Auswirkungen der Höhenlage und der früheren Schneeschmelze auf den Artenreichtum von Coleoptera. Wir stellten fest, dass die Abundanz und der Artenreichtum von Coleoptera sowie die Abundanz der Diptera mit steigender Höhenlage zunahmen, während die Abundanz der Hemiptera mit steigender Höhe abnahm. Araneae und Hymenoptera zeigten keine Abundanzmuster entlang des Höhengradienten. Eine simulierte frühere Schneeschmelze ließ die Abundanz der Araneae und Hymenoptera ansteigen. Arthropoden, die im Boden überwinterten, schlüpften in höheren Lagen bis zu sieben Wochen später. Eine frühere Schneeschmelze beeinflusste die Schlupfphänologie der Arthropoden unmittelbar nach der Schneeschmelze jedoch nicht. Aufgrund des Klimawandels wird eine frühere Schneeschmelze häufiger auftreten, was vor allem Auswirkungen auf bodenüberwinternde Arthropoden in der Alpenregion haben kann und zu Desynchronisationen mit interagierenden Arten führen kann. VII. Abschließend lässt sich sagen, dass alpine Ökosysteme sensibel auf klimatische Veränderungen und Extremereignisse reagieren und dass viele alpine Arten in den Bayerischen Alpen gefährdet sind. Viele alpine Arten könnten unter wärmeren klimatischen Bedingungen existieren, aber vermutlich werden sie von konkurrenzstärkeren Tieflandarten verdrängt. Des Weiteren können Wirt-Parasit oder Räuber-Beute Interaktionen durch unterschiedliche Reaktionen von bestimmten Gruppen auf Klimawandel gestört werden. Es bleibt eine große Herausforderung die komplexen Dynamiken und möglichen Gefahren des zukünftigen Klimawandels zu verstehen und vorherzusagen. Wir empfehlen weitere Studien, die die Auswirkungen des Klimawandels auf Arten und Artengesellschaften untersuchen.
4

Effects of climate change, extreme events and management on plants, pollinators and mutualistic interaction networks / Auswirkungen von Klimawandel, Extremereignissen und Management auf Pflanzen, Bestäuber und mutualistische Netzwerke

Hoiß, Bernhard January 2013 (has links) (PDF)
I. Climate change comprises average temperatures rise, changes in the distribution of precipitation and an increased amount and intensity of extreme climatic events in the last decades. Considering these serious changes in the abiotic environment it seems obvious that ecosystems also change. Flora and fauna have to adapt to the fast changing conditions, migrate or go extinct. This might result in shifts in biodiversity, species composition, species interactions and in ecosystem functioning and services. Mountains play an important role in the research of these climate impacts. They are hotspots of biodiversity and can be used as powerful natural experiments as they provide, within short distances, the opportunity to research changes in the ecosystem induced by different climatic contexts. In this dissertation two approaches were pursued: i) surveys of biodiversity, trait dominance and assembly rules in communities depending on the climatic context and different management regimes were conducted (chapters II and III) and ii) the effects of experimental climate treatments on essential ecosystem features along the altitudinal gradient were assessed (chapters IV, V and VI). II. We studied the relative importance of management, an altitudinal climatic gradient and their interactions for plant species richness and the dominance of pollination types in 34 alpine grasslands. Species richness peaked at intermediate temperatures and was higher in grazed grasslands compared to non-managed grasslands. We found the climatic context and also management to influence the distribution and dominance structures of wind- and insect-pollinated plants. Our results indicate that extensive grazing maintains high plant diversity over the full subalpine gradient. Rising temperatures may cause an upward shift of the diversity peak of plants and may also result in changed species composition and adaptive potential of pollination types. III. On the same alpine grasslands we studied the impact of the climatic context along an altitudinal gradient on species richness and community assembly in bee communities. Species richness and abundance declined linearly with increasing altitude. Bee species were more closely related at high altitudes than at low altitudes. The proportion of social and ground-nesting species, as well as mean body size and altitudinal range of bees, increased with increasing altitude, whereas the mean geographic distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, while the relative importance of competition increases at low altitudes. We conclude that ongoing climate change poses a threat for alpine specialists with adaptations to cool environments but low competitive capacities. IV. We determined the impacts of short-term climate events on flower phenology and assessed whether those impacts differed between lower and higher altitudes. For that we simulated advanced and delayed snowmelt as well as drought events in a multi site experiment along an altitudinal gradient. Flower phenology was strongly affected by altitude, however, this effect declined through the season. The manipulative treatments caused only few changes in flowering phenology. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but altitude did not influence the effect of the other treatments. The length of flowering duration was not significantly influenced by treatments. Our data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps. V. Changes in the structure of plant-pollinator networks were assessed along an altitudinal gradient combined with the experimental simulation of potential consequences of climate change: extreme drought events, advanced and delayed snowmelt. We found a trend of decreasing specialisation and therefore increasing complexity in networks with increasing altitude. After advanced snowmelt or drought networks were more specialised especially at higher altitudes compared to control plots. Our results show that changes in the network structures after climate manipulations depend on the climatic context and reveal an increasing susceptibility of plant-pollinator networks with increasing altitude. VI. The aim of this study was to determine the combined effects of extreme climatic events and altitude on leaf CN (carbon to nitrogen) ratios and herbivory rates in different plant guilds. We found no overall effect of climate manipulations (extreme drought events, advanced and delayed snowmelt) on leaf CN ratios and herbivory rates. However, plant guilds differed in CN ratios and herbivory rates and responded differently to altitude. CN ratios of forbs (legume and non-legume) decreased with altitude, whereas CN ratios of grasses increased with altitude. Further, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Insect herbivory rates were driven by food plant quality. Contrasting altitudinal responses of forbs versus grasses give reason to expect changed dominance structures among plant guilds with ongoing climate change. VII. This dissertation contributes to the understanding of factors that determine the composition and biotic interactions of communities in different climates. The results presented indicate that warmer climates will not only change species richness but also the assembly-rules for plant and bee communities depending on the species' functional traits. Our investigations provide insights in the resilience of different ecosystem features and processes towards climate change and how this resilience depends on the environmental context. It seems that mutualistic interactions are more susceptible to short-term climate events than flowering phenology and antagonistic interactions such as herbivory. However, to draw more general conclusions more empirical data is needed. / I. Das Klima ändert sich: die Durchschnittstemperaturen steigen, die Niederschlagsverteilung ändert sich und sowohl die Anzahl als auch die Intensität von klimatischen Extremereignissen hat in den letzten Jahrzehnten zugenommen. In Anbetracht dieser beträchtlichen Veränderungen in der abiotischen Umwelt scheint es offensichtlich, dass sich auch die Ökosysteme verändern. Flora und Fauna müssen sich an die sich schnell verändernden Bedingungen anpassen, wandern oder sie sterben aus. Dies kann zu Veränderungen in der Biodiversität, der Artzusammensetzung, den Ökosystemfunktionen sowie von Ökosystemdienstleistungen führen. Gebirge spielen eine wichtige Rolle in der Erforschung dieser Klimafolgen. Sie sind Biodiversitäts-Hotspots und können als großräumige natürliche Experimente genutzt werden, da sie die Möglichkeit bieten, innerhalb kurzer Distanzen Veränderungen im Ökosystem unter verschiedenen klimatischen Bedingungen zu untersuchen. In dieser Dissertation wurden zwei Ansätze verfolgt: i) Es wurden Untersuchungen zur Abhängigkeit von Biodiversität, der Dominanz von funktionalen Merkmalen sowie den Gesetzmäßigkeiten in der Zusammensetzung von Artengemeinschaften vom klimatischen Kontext sowie verschiedenen Management Regimen durchgeführt. ii) Die Effekte von Klimaexperimenten auf essentielle Ökosystemeigenschaften, biotische Interaktionen und Nahrungsnetze entlang eines Höhengradienten wurden untersucht. II. Die relative Bedeutung von Höhenlage, Bewirtschaftungsform sowie ihre Interaktionen für den Artenreichtum von Pflanzen und die Dominanz von Bestäubungstypen wurden in 34 alpinen Wiesen untersucht. Der Artenreichtum erreichte bei mittleren Temperaturen ein Maximum und war auf beweideten Flächen höher als auf nicht bewirtschafteten Wiesen. Wir stellten außerdem fest, dass sowohl der klimatische Kontext als auch die Bewirtschaftungsform die Verteilung und Dominanzstrukturen von wind- und insektenbestäubten Pflanzen beeinflusste. Unsere Ergebnisse zeigen, dass extensive Beweidung eine hohe Artenvielfalt über den gesamten subalpinen Gradienten erhält. Steigende Temperaturen könnten eine Verschiebung des Bereiches mit maximaler Artenvielfalt nach oben sowie veränderte Zusammensetzungen von Artengemeinschaften und Veränderungen in der Bedeutung von Bestäubungstypen als Anpassung verursachen. III. Auf den selben alpinen Wiesen untersuchten wir den Einfluss der klimatischen Gegebenheiten entlang des Höhengradienten auf die Artenzahl und die Gesetzmäßigkeiten in der Zusammensetzung von Wildbienen Artengemeinschaften. Die Artenzahl und Abundanz nahm mit zunehmender Höhe linear ab. Die Bienenarten in höheren Lagen waren näher miteinander verwandt als in niedrigen Lagen. Der Anteil sozialer, im Boden nistender Arten sowie die mittlere Körpergröße und Höhenverbreitung der Bienen nahm mit zunehmender Höhe zu, wohingegen die mittlere geographische Verbreitung der Arten abnahm. Unsere Ergebnisse legen nahe, dass die Zusammensetzung von Artengemeinschaften in höheren Lagen primär vom Filtereffekt der Umwelt bestimmt wird, wohingegen der Einfluss von Konkurrenz in niedrigen Lagen an Bedeutung gewinnt. Wir folgern, dass der fortschreitende Klimawandel eine Gefährdung für alpine Spezialisten darstellt, die zwar Anpassungen an kühle Bedingungen aber oft eine nur geringe Konkurrenzfähigkeit aufweisen. IV. Wir untersuchten die Auswirkung von kurzzeitigen klimatischen Ereignissen auf die Blütenphänologie und analysierten, ob sich diese Auswirkungen zwischen hohen und tiefen Lagen unterscheiden. Dazu simulierten wir verfrühte und verspätete Schneeschmelze sowie Dürreereignisse in Experimenten auf multiplen Standorten entlang eines Höhengradienten. Die Blütenphänologie wurde von der Höhenlage stark beeinflusst, dieser Effekt nahm im Laufe der Saison allerdings ab. Die Manipulationen zeitigten nur wenige Effekte auf die Blühphänologie. Die Auswirkungen von verfrühter Schneeschmelze waren auf hohen Flächen signifikant höher als in niedrigen Lagen, es wurden jedoch keine Unterschiede für die anderen Behandlungen zwischen den Höhenstufen gefunden. Die Blühdauer wurde durch die Behandlungen nicht beeinflusst. Unsere Daten zeigen ein relativ geringes Risiko für die Blütenphänologie durch Dürreereignisse in den bayerischen Alpen auf. V. Veränderungen in der Struktur von Pflanzen-Bestäuber Netzwerken wurden entlang eines Höhengradienten in Kombination mit der experimentellen Simulation von potentiellen Konsequenzen des Klimawandels (extreme Dürre, verfrühte und verspätete Schneeschmelze) untersucht. Wir fanden einen Trend hin zu einem abnehmenden Spezialisierungsgrad und daher einer Zunahme der Komplexität in Netzwerken mit zunehmender Höhe. Die Netzwerke nach verfrühter Schneeschmelze und nach Dürre waren, insbesondere in höheren Lagen, stärker spezialisiert als in den Kontrollflächen. Unsere Ergebnisse zeigen, dass Veränderungen in den Netzwerkstrukturen nach Klimamanipulationen vom klimatischen Zusammenhang abhängen und zeigen auf, dass die Anfälligkeit von Pflanzen-Bestäuber Netzwerken mit der Höhe zunimmt. VI. Das Ziel dieser Studie war es die kombinierten Auswirkungen von kurzzeitigen klimatischen Ereignissen und Meereshöhe auf das CN (Kohlenstoff zu Stickstoff) Verhältnis in Blättern und den Blattfraß in verschiedenen Pflanzengruppen zu untersuchen. Wir fanden keinen Gesamteffekt der Klimamanipulationen (extremes Dürreereignis, verfrühte und verspätete Schneeschmelze) auf das CN Verhältnis und die Herbivorieraten. Die Pflanzengruppen unterschieden sich jedoch in ihrer Reaktion auf die Meereshöhe hinsichtlich ihres CN Verhältnisses und des Blattfraßes. Das CN Verhältnis in Gräsern nahm mit der Höhe zu, wohingegen das CN Verhältnis in den restlichen krautigen Pflanzen mit zunehmender Höhe abnahm. Außerdem nahmen CN Verhältnis und die Herbivorierate im Laufe der Saison zu, was auf eine Abnahme der Futterqualität im Saisonverlauf hindeutet. Die Herbivorieraten wurden von der Futterqualität der Pflanzen bestimmt. Die gegensätzlichen Muster von Gräsern und anderen krautigen Pflanzen über die Höhe lassen veränderte Dominanzstrukturen zwischen Pflanzengruppen mit fortschreitendem Klimawandel zu erwarten. VII. Diese Dissertation leistet einen Beitrag zur Identifikation von Gesetzmäßigkeiten in der Zusammensetzung von Artengemeinschaften unter unterschiedlichen klimatischen Bedingungen. Die präsentierten Ergebnisse weisen darauf hin, dass ein wärmeres Klima nicht nur den Artenreichtum, sondern auch diese Gesetzmäßigkeiten für Pflanzen- und Bienenvergesellschaftungen in Abhängigkeit von den funktionellen Merkmalen der Arten verändern wird. Unsere Untersuchungen liefern Erkenntnisse über die Stabilität verschiedener Ökosystemaspekte und -prozesse gegenüber dem Klimawandel und wie diese Stabilität vom Umweltkontext abhängt. Es scheint, dass mutualistische Interaktionen anfälliger sind für kurzfristige Klimaereignisse als die Phänologie von Blüten oder antagonistische Interaktionen wie die Herbivorie. Um allgemeinere Rückschlüsse ziehen zu können bedarf es jedoch dringend weiterer empirischer Daten.
5

Landslide Susceptibility and Climate Change Scenarios in Flysch Areas of the Eastern Alps / GIS-basierte Rutschgefährdungsmodellierung unter Berücksichtigung von Klimaänderungsszenarien in Flysch-Gebieten des Wienerwaldes

Neuhäuser, Bettina January 2014 (has links) (PDF)
The topic of the present study focuses on landslide susceptibility assessment in the Northern Vienna Forest by GIS-based, statistic-probabilistic and deterministic modelling. The study is based on two complementary approaches for integrated landslide susceptibility assessment, which is not limited to one single methodology and its inherent assumptions. A statistic-probabilistic method is applied to the whole region of the Northern Vienna Forest. This regional model investigates the basic disposition for landslides under consideration of controlling factors, which are persistent and more or less constant over time. A deterministic method is applied on a larger scale in a sub-study site of the Hagenbach Valley. These detailed models aim to investigate the variable disposition as a function of substrate wetness, which is in turn dependent on meteorological conditions. A main aspect of the work is the development of various wetness scenarios, which consider short-term weather phenomena, like heavy or long-lasting rainfall, but which also investigate the influence of meteorological and climate conditions on slope stability, which may vary in mid-term and long-term. Furthermore, the assessment of the effects of climate change on the disposition for landslides is a major aspect of the study. Hence, average changes in air temperature and precipitation as predicted by Regional Climate Models are incorporated into modelling. In this context, it is tested whether changes in substrate wetness and thus in slope stability can be identified and quantified as a consequence of changed climate conditions. As further objective shallow slope movements are incorporated into disposition modelling. According to geomorphological and sedimentological studies, these quaternary sediments are essential for slope formation in the Vienna Forest. In general, it is assumed that landslides primarily occur in weathered flysch sandstones rich in marl. Field-based surveys, however, identified shallow landslide activity in the quaternary sediments covering the flysch bedrock in wide areas. Therefore, the influence of these sediments on slope dynamics is studied in the present work within GIS-based slope stability models. The results of the statistic-probabilistic landslide susceptibility assessment provide information on the basic disposition of the Northern Vienna Forest for landslides. The resulting regional susceptibility map reveals that the Northern Zone, a tectonic unit in the north of the study area, has extensive areas with the highest degree of landslide susceptibility. In this overthrust area in transition to the Molasse Zone there are geological units which are highly susceptible to landslides. The “Wolfpassing Formation” and the “Calcareous Klippen” of the Northern Zone show significant landslide densities. These geological zones start in the north near St. Andrä-Wördern and continue in south-western direction along the ridges of Tulbinger Kogel, Klosterberg, Frauenberg, and Eichberg. Statistical weighting carried out in the course of regional landslide susceptibility assessment provides information on the spatial relation between landslide processes and specific controlling factors. The modelling highlights the relevance of zones rich in clay within the flysch formations as controlling geofactor. The highest landslide susceptibility is calculated for the geological units, which contain layers of Gaultflysch rich in clay and shale. Furthermore, a close correlation between the distribution of landslides on the one hand and the spatial distribution of the fault system and nappe boundaries on the other hand is ascertained. Hence, the tectonic conditions can be seen as crucial controlling geofactor for landslide activity in the study area. In the proximity of drainage lines an increased landslide frequency is revealed. In combination with heavy rainfall, torrential discharge can occur in creeks and may cause instabilities in adjacent hillslopes. In addition, the model documents an enhancement of landslide susceptibility on north-west facing slopes. In comparison to meteorological data it is obvious that the north-west exposition corresponds to the prevailing wind direction of the study area. Therefore, north-west facing slopes might be exposed to enhanced advective rainfall amounts, which can increase substrate wetness and thus landslide susceptibility. The latter geofactors indicate the significance of meteorological and hydrological conditions for the occurrence of landslides in the study area. As described above, the regional assessment is based on controlling factors that are persistent over a long period of time and can therefore be considered as constant. On the contrary, the large-scale, physically based deterministic modelling investigates the disposition for landslides under variable humidity conditions in the substrate. In conclusion it can be stated that the disposition for slope instability is strongly varying in dependence of the humidity conditions in the substrate. A heavy rainfall event causes a drastic reduction of stable areas by 23% compared to monthly average wetness conditions in summer (July). In summary the wetness scenarios demonstrate, that apart from short-term weather conditions, like long-lasting or heavy rainfall, the long-term-development of substrate moisture has impact on slope stability. The more persistent, seasonally fluctuating wetness conditions show measureable influence on slope stability: As a consequence of increased topographic wetness in the winter month February there is an increase of instable areas by 5% in comparison with the summer month July. The modelling further revealed that quaternary sediments are more moisture sensitive and the influence of changing wetness conditions is stronger in these layers than in the bedrock. The results of modelling, which are based on climate change, indicate that a moderate change of slope stability on a monthly average is possible in comparison to the conditions of the climate normal period. An assumed average monthly temperature increase of 2°C in combination with a precipitation increase of 30% in the winter months lead to an augmentation of recharge of 7% in the model in comparison with the long-term average conditions. Due to this increased recharge, there is a slight increase of topographic wetness in the model. This wetness augmentation results in an extension of instable slope areas by 3% and a reduction of the stable slope areas proportional to this extension. This slightly increased instability reduces critical triggering thresholds for single rainfall events meaning that even lower precipitation amounts or intensities can cause instabilities. In contrast to the winter months, the incorporation of forecasted climate change into the modelling reveals a reduction of instable slope areas in favour of stable areas in the summer scenario. The forecasted average air temperature increase of 2.5°C in combination with a reduction of the average monthly precipitation amount of 15% drastically decreases substrate moisture. Consequently, instable slope areas are reduced by 11% of the study area. This effect on slope stability in the model mainly results from the reduced monthly rainfall amounts, but also from increased evapotranspiration as a consequence of the increased air temperature causing reduced recharge amounts. However, in spite of the monthly decrease of precipitation amounts, precipitation intensities are probable to rise according to climate studies. In this context the results of the modelling indicate, that a drastic, short-term increase of landslide disposition due to heavy rainfall events has to be expected more frequently in summer. The results of the complementary methods are then assembled. Based on this synthesis the following conclusion can be drawn: The regional landslide susceptibility assessment yields that hillslopes with an inclination of 26° to 31° are highly landslide prone. The physically based models indicate that in this slope gradient range the presence of quaternary sediments is of major importance for landslides. Therefore, it can be concluded that a considerable portion of known landslides mapped in flysch actually occurred in quaternary sediments. / Das Thema der vorliegenden Arbeit umfasst die Beurteilung der Hangrutschungsgefährdung im nördlichen Wienerwald mit Hilfe von GIS-basierten, deterministischen und statistisch-probabilistischen Modellierungen. Für eine integrierte Beurteilung der Rutschanfälligkeit, welche nicht auf einen einzigen methodischen Ansatz und dessen inhärente Annahmen beschränkt ist, werden in dieser Arbeit zwei komplementäre Methoden durchgeführt. Die statistisch-probabilistische Methode wird auf die gesamte Region des nördlichen Wienerwalds angewandt. Dieses regionale Modell untersucht die Grunddisposition zur Entstehung von Rutschungen unter Berücksichtigung von Steuerungsfaktoren, die über einen längeren Zeitraum hinweg als konstant angesehen werden können. Die deterministische Methode wird in einem Detailgebiet im Hagenbachtal angewandt. Diese Detailmodellierungen zielen darauf ab, die variable Disposition für Rutschungen in Abhängigkeit von Substratfeuchte zu unter-suchen, die wiederum von meteorologischen Bedingungen abhängig ist. Ein Hauptaspekt der Arbeit ist dabei die Entwicklung von Feuchteszenarien, die sowohl kurzfristige Witterungsphänomene, wie langanhaltenden Niederschlag oder Starkregen, berücksichtigen, die aber auch den Einfluss von mittelfristig bis langfristig veränderlichen meteorologischen und klimatischen Faktoren auf die Hangstabilität untersuchen. Weiters ist die Abschätzung der Folgen der prognostizierten Klimaänderung auf die Rutschdisposition ein zentraler Aspekt der Arbeit. Dabei werden durchschnittliche monatliche Veränderungen der Lufttemperatur und des Niederschlages in den Modellierungen berück-sichtigt, wie sie durch Regionale Klimamodelle vorhergesagt werden. Hierbei soll geprüft werden, inwieweit Änderungen in der Substratfeuchte und der Hangstabilität als Folge von veränderten Klimabedingungen feststellbar und quantifizierbar sind. Ein weiteres Ziel ist die Berücksichtigung von flachgründigen Rutschungen in quartären Sedimenten im Rahmen der Dispositions-modellierung. Auf Grundlage geomorpho-logischer und sedimentologischer Studien kann davon ausgegangen werden, dass diese entscheidend die Hangentwicklung im Wienerwald beeinflussen. Bisher wurde allgemein davon ausgegangen, dass Rutschungen vor allem in den mergelreichen, verwitterten Sandsteinen des Flyschs entstehen. Gelände-basierte Untersuchungen identifizieren allerdings häufig Rutschungen in den quartären Deckschichten, welche weite Bereiche des Anstehenden überlagern. In der vorliegenden Arbeit wird daher der Einfluss dieser Sedimente auf die Hangdynamik innerhalb der GIS-basierten Stabilitätsmodelle untersucht. Die Ergebnisse der statistisch-probabilistischen Modellierung liefern Informationen über die Grunddisposition zur Rutschungsaktivität im nördlichen Wienerwald. Die resultierende Rutschanfälligkeitskarte zeigt, dass die Nordrandzone, eine tektonische Einheit im Norden des Untersuchungsgebietes, die ausgedehntesten Gebiete mit der höchsten Rutschanfälligkeit aufweist. In diesem Überschiebungsbereich zur Molassezone treten geologische Einheiten auf, die dem Modell zufolge als sehr rutschanfällig eingestuft werden. Die „Wolfpassing Formation“ und die „Kalkigen Klippen“ der Nordrandzone zeigen eine signifikant erhöhte Dichte an Rutschungen. Diese geologischen Einheiten beginnen im Norden in der Nähe von St. Andrä-Wördern und verlaufen weiter in Richtung Süd-Westen entlang der Bergrücken von Tulbinger Kogel, Klosterberg, Frauenberg und Eichberg. Die statistische Gewichtung, die im Zuge der regionalen Bewertung der Rutschanfälligkeit durchgeführt wird, liefert Informationen über den räumlichen Zusammenhang zwischen Rutschungen und den Steuerungsfaktoren. Die Modellierung hebt die Bedeutung von tonschieferreichen Schichten als Dispositions-faktor hervor. Die höchste Rutschanfälligkeit wird in den geologischen Einheiten berechnet, welche die tonschieferreichen Schichten des Gaultflysch enthalten. Darüber hinaus wird festgestellt, dass die Verbreitung von Rutschungen eng mit der räumlichen Verbreitung von Störungszonen und Deckengrenzen verbunden ist. Die tektonischen Bedingungen können daher als wesentlicher Steuerungsfaktor der Rutschungsaktivität im Untersuchungsgebiet angesehen werden. Eine erhöhte Häufigkeit von Massenbewegungen wird in unmittelbarer Nähe zum Gewässernetz festgestellt. In Verbindung mit starken Regenfällen kommt es im Untersuchungsgebiet zu wildbachähnlichen Abflüssen in den Gerinnen, wodurch in angrenzenden Hängen Instabilitäten auftreten können. Es wird ferner durch das Modell belegt, dass die Anfälligkeit für Rutschungen auf Nord-West exponierten Hängen erhöht ist. Der Vergleich mit meteorologischen Daten zeigt, dass die Nord-West-Hangexposition der dominierenden Windrichtung im Untersuchungsgebiet entspricht. Dadurch können entsprechend exponierte Hänge erhöhten advektiven Niederschlagsmengen ausgesetzt sein, welche die Bodenfeuchte und folglich die Rutschanfälligkeit erhöhen. Letztere Geofaktoren zeigen die Bedeutung der meteorologischen und hydrologischen Bedingungen für das Auftreten von Rutschungen im Untersuchungsgebiet. Wie oben beschrieben basiert das regionale Bewertungsmodell auf Steuerungsfaktoren, die über längere Zeit hinweg gleichbleibend sind und daher als konstant angesehen werden können. Im Gegensatz dazu wir durch physikalisch-basierte, deterministische Modellierungen die Disposition für Rutschungen unter variablen Feuchtebedingungen im Substrat untersucht. Zusammenfassend ist festzustellen, dass die Disposition zur Hanginstabilität im Untersuchungsgebiet stark in Abhängigkeit von der Substratfeuchte variiert. Ein Starkregen von 60mm/h kann eine Reduzierung der stabilen Bereiche um 23% im Vergleich zu durchschnittlichen monatlichen Feuchte-bedingungen im Sommer (Juli) verursachen. Insgesamt zeigen die Feuchteszenarien, dass neben kurzfristigen Witterungserscheinungen, wie langanhaltendem Niederschlag oder Starkregen, auch langfristige Feuchte-bedingungen im Substrat die Hangstabilität beeinflussen. So zeigen saisonal schwankende Feuchtebedingungen leichten aber messbaren Einfluss auf die Hangstabilität: Als Folge der erhöhten topographischen Feuchte im Wintermonat Februar ergibt sich eine Zunahme der instabilen Bereiche um 5% gegenüber dem Sommermonat Juli. Die Feuchteszenarien zeigen außerdem, dass die quartären Sedimente empfindlicher auf die wechselnden Feuchte-bedingungen reagieren, als das Flyschgestein. Die Ergebnisse der Modellierung, die auf prognostizierter Klimaänderung basiert, deuten darauf hin, dass eine moderate Änderung der Hangstabilität im Monatsdurchschnitt im Vergleich zu den Bedingungen in der Klimanormalperiode möglich ist. Eine angenommene durchschnittliche Erhöhung der Lufttemperatur um 2°C in Kombination mit einer um 30% erhöhten Niederschlagsmenge in den Wintermonaten führt im Modell zu einer Erhöhung des Grundwasserzuflusses um 7% gegenüber dem langjährigen Durchschnitt. Durch diesen erhöhten Zufluss zeigt sich im Modellvergleich eine leicht erhöhte topographische Feuchte im Winter. Diese Feuchtigkeitszunahme führt dazu, dass sich stabile Hangbereiche um rund 3% verringern und sich instabile Hangbereiche um den gleichen Betrag ausweiten. Diese leicht erhöhte Instabilität kann dazu führen, dass bereits geringere Niederschlagsmengen bzw. Intensitäten einzelner Regenereignisse eine Überschreitung der Grenzwerte im Stabilitätsgleichgewicht verursachen. Im Sommer ist hingegen unter Berücksichtigung prognostizierter Klimaänderungen eine Verringerung instabiler zugunsten stabiler Hangbereiche festzustellen. Die berücksichtigte durchschnittliche Erhöhung der Lufttemperatur um 2,5°C hat in Kombination mit einem Rückgang der durchschnittlichen Niederschlagsmenge um 15% eine erhöhte Trockenheit im Substrat zur Folge. Folglich weiten sich stabile Bereiche um rund 11% der Fläche des Untersuchungsgebietes aus. Dieser Effekt ergibt sich im Modell durch eine geringere Niederschlagsmenge, aber auch durch erhöhte Evapotranspiration in Folge des Temperaturanstieges und des dadurch verringerten Zuflusses. Allerdings gilt künftig, trotz insgesamt verringerter monatlicher Niederschlagsmengen im Sommer, eine Zunahme der Niederschlagsintensitäten als wahrscheinlich. In diesem Zusammenhang lassen die Modellierungsergebnisse den Schluss zu, dass häufiger mit einer kurzfristig drastisch erhöhten Rutschanfälligkeit durch Starkregen im Sommer zu rechnen ist. Die Ergebnisse der komplementären Methoden, werden anschließend zusammengeführt. Aus dieser Synthese kann folgendes Fazit gezogen werden: Die regionale Modellierung der Suszeptibilität ergibt, dass Hänge mit einer Neigung von 26° bis 31° hoch rutschanfällig sind. Die physikalisch-basierten Modellierungen deuten darauf hin, dass in diesem Hangneigungsbereich das Vorkommen quartärer Sedimente für Rutschungen von besonderer Bedeutung ist. Daher kann der Schluss gezogen werden, dass ein erheblicher Teil der im Flysch kartierten Rutschungen eigentlich in quartären Sedimenten aufgetreten sind.
6

Future changes and signal analyses of climate means and extremes in the Mediterranean Area deduced from a CMIP3 multi-model ensemble / Zukünftige Veränderungen und Signalanalysen klimatischer Mittelwerte und Extremereignisse im Mittelmeerraum abgeleitet aus einem Multi-Modell Ensemble der CMIP3-Datenbank

Vogt, Gernot January 2014 (has links) (PDF)
Considering its social, economic and natural conditions the Mediterranean Area is a highly vulnerable region by designated affections of climate change. Furthermore, its climatic characteristics are subordinated to high natural variability and are steered by various elements, leading to strong seasonal alterations. Additionally, General Circulation Models project compelling trends in specific climate variables within this region. These circumstances recommend this region for the scientific analyses conducted within this study. Based on the data of the CMIP3 database, the fundamental aim of this study is a detailed investigation of the total variability and the accompanied uncertainty, which superpose these trends, in the projections of temperature, precipitation and sea-level pressure by GCMs and their specific realizations. Special focus in the whole study is dedicated to the German model ECHAM5/MPI-OM. Following this ambition detailed trends and mean values are calculated and displayed for meaningful time periods and compared to reanalysis data of ERA40 and NCEP. To provide quantitative comparison the mentioned data are interpolated to a common 3x3° grid. The total amount of variability is separated in its contributors by the application of an Analysis of Variance (ANOVA). For individual GCMs and their ensemble-members this is done with the application of a 1-way ANOVA, separating a treatment common to all ensemble-members and variability perturbating the signal given by different initial conditions. With the 2-way ANOVA the projections of numerous models and their realizations are analysed and the total amount of variability is separated into a common treatment effect, a linear bias between the models, an interaction coefficient and the residuals. By doing this, the study is fulfilled in a very detailed approach, by considering yearly and seasonal variations in various reasonable time periods of 1961-2000 to match up with the reanalysis data, from 1961-2050 to provide a transient time period, 2001-2098 with exclusive regard on future simulations and 1901-2098 to comprise a time period of maximum length. The statistical analyses are conducted for regional-averages on the one hand and with respect to individual grid-cells on the other hand. For each of these applications the SRES scenarios of A1B, A2 and B1 are utilized. Furthermore, the spatial approach of the ANOVA is substituted by a temporal approach detecting the temporal development of individual variables. Additionally, an attempt is made to enlarge the signal by applying selected statistical methods. In the detailed investigation it becomes evident, that the different parameters (i.e. length of temporal period, geographic location, climate variable, season, scenarios, models, etc…) have compelling impact on the results, either in enforcing or weakening them by different combinations. This holds on the one hand for the means and trends but also on the other hand for the contributions of the variabilities affecting the uncertainty and the signal. While temperature is a climate variable showing strong signals across these parameters, for precipitation mainly the noise comes to the fore, while for sea-level pressure a more differentiated result manifests. In turn, this recommends the distinguished consideration of the individual parameters in climate impact studies and processes in model generation, as the affecting parameters also provide information about the linkage within the system. Finally, an investigation of extreme precipitation is conducted, implementing the variables of the total amount of heavy precipitation, the frequency of heavy-precipitation events, the percentage of this heavy precipitation to overall precipitation and the mean daily intensity from events of heavy precipitation. Each time heavy precipitation is defined to exceed the 95th percentile of overall precipitation. Consecutively mean values of these variables are displayed for ECHAM5/MPI-OM and the multi-model mean and climate sensitivities, by means of their difference between their average of the past period of 1981-2000 and the average of one of the future periods of 2046-2065 or 2081-2100. Following this investigation again an ANOVA is conducted providing a quantitative measurement of the severity of change of trends in heavy precipitation across several GCMs. Besides it is a difficult task to account for extreme precipitation by GCMs, it is noteworthy that the investigated models differ highly in their projections, resulting partially in a more smoothed and meaningful multi-model mean. Seasonal alterations of the strength of this behaviour are quantitatively supported by the ANOVA. / Bezüglich seiner sozialen, wirtschaftlichen und natürlichen Gegebenheiten ist der Mittelmeerraum eine Region, die in Anbetracht des zu erwartenden Klimawandels äußerst anfällig ist. Seine klimatischen Eigenschaften sind hoher natürlicher Variabilität, unterschiedlichen Antriebsmechanismen, sowie einer starken saisonalen Schwankung unterworfen. Zudem projizieren Globale Zirkulationsmodelle für diese Region aussagekräftige Trends für ausgewählte Klimavariablen. Diese Vorraussetzungen machen den Mittelmeerraum zu einem hervorragenden Studienobjekt für diese wissenschaftliche Arbeit. Auf der Basis der CMIP3 Datenbank ist das zu Grunde liegende Ziel dieser Arbeit eine detaillierte Untersuchung der Gesamtvariabilität und der damit einhergehenden Unsicherheit, die in den Projektionen der Globalen Zirkulationsmodelle und deren einzelnen Realisationen die Trends der Variablen Temperatur, Niederschlag und Druck überlagert. Besonderes Augenmerk liegt dabei auf dem deutschen Modell ECHAM5/MPI-OM. Für dieses Ziel werden Trends und Mittelwerte für aussagekräftige Zeitperioden berechnet und graphisch den Reanalysedatensätzen NCEP und ERA40 gegenübergestellt. Um quantitative Vergleiche zu ermöglichen werden die angesprochenen Datensätze auf ein gemeinsames geographisches Gitter von 3x3° interpoliert. Der Gesamtanteil der Variabilität wird in seine Entstehungsquellen durch die Anwendung einer Varianzanalyse (ANOVA) aufgeteilt. Dies wird mit einer 1-Wege Varianzanalyse für einzelne Globale Zirkulationsmodelle und ihre Realisationen durchgeführt, wobei ein Anteil dem Signal entspricht, das in allen Realisationen vorhanden ist und ein Anteil dem Rauschen zugeordnet werden kann, das das Signal überlagert und unterschiedlichen Anfangsbedingungen des Modells geschuldet ist. Durch eine 2-Wege Varianzanalyse werden die unterschiedlichen Realisationen mehrerer Klimamodelle in eine Analyse eingebunden, wobei der Anteil der Gesamtvariabilität wiederum in einen gemeinsamen Signalanteil, einem Anteil des linearen Unterschieds zwischen den verschiedenen Klimamodellen, einem Interaktionskoeffizient und dem Rauschen aufgeteilt werden. Die Anwendung dieser Verfahren wird detailliert ausgeführt, indem die Analysen auf jährlicher und saisonaler Grundlage für unterschiedliche Zeitperioden, nämlich 1961-1990 für den Vergleich mit den Reanalysedatensätzen, 1961-2050 als eine Übergangsperiode zwischen den Szenarien, 2001-2098 als reinen zukünftigen Betrachtungszeitraum und 1901-2098 um eine maximal umfassende Zeitperiode zu erhalten, betrachtet werden. Die statistischen Verfahren werden sowohl für regionale Mittelwerte als auch für einzelne Gitterpunkte berechnet. Für jede dieser Berechnungen werden die SRES Szenarien A1B, A2 und B1 herangezogen. Zudem wird der räumliche Ansatz der ANOVA ebenso durch einen zeitlichen ersetzt, wodurch die zeitliche Entwicklung der einzelnen Variabilitäten dargestellt wird. Des Weiteren wird durch gezielte statistische Methoden versucht, künstlich verstärkte Signale zu detektieren. Durch die detaillierte Untersuchung wird offenkundig, dass die unterschiedlichen Randbedingungen (hier die Länge der Zeitperiode, der geographische Ort, die Bezugsvariable, die Saison, das Szenario, das Modell, etc…) eine entscheidende Rolle für das Ergebnis spielen, indem sie einerseits durch deren unterschiedlicher Kombination es sowohl verstärken als auch glätten können. Dies gilt sowohl für die Mittelwerte und die Trends als auch für die unterschiedlichen Partitionen der Variabilitäten, die wiederum die Unsicherheiten und das Signal beeinflussen. Während Temperatur starke Signale über alle dieser Randbedingungen aufweist, so zeigt sich für Niederschlag hauptsächlich ein starkes Rauschen, während für Druck eine sehr ambivalente Verteilung hervortritt. Dies wiederum beweist, dass dieser differenzierte Ansatz bezüglich der Betrachtung der Abhängigkeit dieser Randebedingungen unabdinglich in Klimafolgestudien und der Modellentwicklung ist, da diese Bedingungen auch Informationen über die Wechselbeziehungen im System beinhalten. Schließlich wird noch die Entwicklung von Extremereignissen hinsichtlich der Niederschlagsmengen von Extremereignissen, der Häufigkeit der Ereignisse von extremen Niederschlagsmengen, dem prozentualen Anteil der Niederschlagsmenge aus Extremereignissen zu der Gesamtniederschlagsmenge und der mittleren täglichen Intensität von Niederschlagsextremereignissen untersucht. Hierbei wird ein Extremereignis als ein Ereignis definiert, das in seiner Menge oberhalb des 95.Perzentils der Menge der Gesamtereignisse liegt. So werden Mittelwerte dieser Variablen für ECHAM5/MPI-OM und über alle Modelle sowie deren Veränderungen zwischen ihren Mittelwerten aus den Zeiträumen der Vergangenheit 1981-2000 und den zukünftigen Perioden von 2046-2065 oder 2081-2100 gezeigt. Der Struktur dieser Studie folgend, wird wiederum eine ANOVA angewendet um eine quantitative Ermessung der Stärke der Veränderung im Erscheinungsbild von Extremniederschlagsereignissen über eine Vielzahl verschiedener Zirkulationsmodelle zu gewinnen. Ungeachtet der schwierigen Tatsache, Extremniederschlagsereignisse aus GCMs abzuleiten, ist es erwähnenswert, dass die betrachteten Modelle stark in ihren Projektionen abweichen, was wiederum zu einem in einem gemäßigten und aussagekräftigerem Multi-Modell Mittelwert führt. Saisonale Unterschiede in diesem Verhalten können durch die ANOVA quantitativ belegt werden.
7

Herbivory, predation and pest control in the context of climate and land use / Herbivorie, Prädation und Schädlingskontrolle im Kontext von Klima und Landnutzung

Fricke, Ute January 2022 (has links) (PDF)
Chapter 1 – General introduction Anthropogenic land-use and climate change are the major drivers of the global biodiversity loss. Yet, biodiversity is essential for human well-being, as we depend on the availability of potable water, sufficient food and further benefits obtained from nature. Each species makes a somewhat unique contribution to these ecosystem services. Furthermore, species tolerate environmental stressors, such as climate change, differently. Thus, biodiversity is both the "engine" and the "insurance" for human well-being in a changing climate. Here, I investigate the effects of temperature and land use on herbivory (Chapter 2), predation (Chapter 3) and pest control (Chapter 4), and at the same time identify features of habitats (e.g. plant richness, proximity to different habitat types) and landscapes (e.g. landscape diversity, proportion of oilseed rape area) as potential management targets in an adaptation strategy to climate change. Finally, I discuss the similarities and differences between factors influencing herbivory, predation and pest control, while placing the observations in the context of climate change as a multifaceted phenomenon, and highlighting starting points for sustainable insect pest management (Chapter 5). Chapter 2 – Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on major plant functional groups Invertebrate herbivores are temperature-sensitive. Rising temperatures increase their metabolic rates and thus their demand for carbon-rich relative to protein-rich resources, which can lead to changes in the diets of generalist herbivores. Here, we quantified leaf-area loss to chewing invertebrates among three plant functional groups (legumes, non-leguminous forbs and grasses), which largely differ in C:N (carbon:nitrogen) ratio. This reseach was conducted along spatial temperature and land-use gradients in open herbaceous vegetation adjacent to different habitat types (forest, grassland, arable field, settlement). Herbivory largely differed among plant functional groups and was higher on legumes than forbs and grasses, except in open areas in forests. There, herbivory was similar among plant functional groups and on legumes lower than in grasslands. Also the presence of many plant families lowered herbivory on legumes. This suggests that open areas in forests and diverse vegetation provide certain protection against leaf damage to some plant families (e.g. legumes). This could be used as part of a conservation strategy for protected species. Overall, the effects of the dominant habitat type in the vicinity and diverse vegetation outweighed those of temperature and large-scale land use (e.g. grassland proportion, landscape diversity) on herbivory of legumes, forbs and grasses at the present time. Chapter 3 – Landscape diversity and local temperature, but not climate, affect arthropod predation among habitat types Herbivorous insects underlie top-down regulation by arthropod predators. Thereby, predation rates depend on predator community composition and behaviour, which is shaped by temperature, plant richness and land use. How the interaction of these factors affects the regulatory performance of predators was unknown. Therefore, we assessed arthropod predation rates on artificial caterpillars along temperature, and land-use gradients. On plots with low local mean temperature (≤ 7°C) often not a single caterpillar was attacked, which may be due to the temperature-dependent inactivity of arthropods. However, multi-annual mean temperature, plant richness and the dominant habitat type in the vicinity did not substantially affect arthropod predation rates. Highest arthropod predation rates were observed in diverse landscapes (2-km scale) independently of the locally dominanting habitat type. As landscape diversity, but not multi-annual mean temperature, affected arthropod predation rates, the diversification of landscapes may also support top-down regulation of herbivores independent of moderate increases of multi-annual mean temperature in the near future. Chapter 4 – Pest control and yield of winter oilseed rape depend on spatiotemporal crop-cover dynamics and flowering onset: implications for global warming Winter oilseed rape is an important oilseed crop in Europe, yet its seed yield is diminished through pests such as the pollen beetle and stem weevils. Damage from pollen beetles depends on pest abundances, but also on the timing of infestation relative to crop development as the bud stage is particularly vulnerable. The development of both oilseed rape and pollen beetles is temperature-dependent, while temperature effects on pest abundances are yet unknown, which brings opportunities and dangers to oilseed rape cropping under increased temperatures. We obtained measures of winter oilseed rape (flowering time, seed yield) and two of its major pests (pollen beetle, stem weevils) for the first time along both land-use and temperature gradients. Infestation with stem weevils was not influenced by any temperature or land-use aspect considered, and natural pest regulation of pollen beetles in terms of parasitism rates of pollen beetle larvae was low (< 30%), except on three out of 29 plots. Nonetheless, we could identify conditions favouring low pollen beetle abundances per plant and high seed yields. Low pollen beetle densities were favoured by a constant oilseed rape area relative to the preceding year (5-km scale), whereas a strong reduction in area (> 40%) caused high pest densities (concentration effect). This occurred more frequently in warmer regions, due to drought around sowing, which contributed to increased pollen beetle numbers in those regions. Yet, in warmer regions, oilseed rape flowered early, which possibly led to partial escape from pollen beetle infestation in the most vulnerable bud stage. This is also suggested by higher seed yields of early flowering oilseed rape fields, but not per se at higher temperatures. Thus, early flowering (e.g. cultivar selection) and the interannual coordination of oilseed rape area offer opportunities for environmental-friendly pollen beetle management. Chapter 5 – General discussion Anthropogenic land-use and climate change are major threats to biodiversity, and consequently to ecosystem functions, although I could show that ecosystem functions such as herbivory and predation barely responded to temperature along a spatial gradient at present time. Yet, it is important to keep several points in mind: (i) The high rate of climate warming likely reduces the time that species will have to adapt to temperature in the future; (ii) Beyond mean temperatures, many aspects of climate will change; (iii) The compensation of biodiversity loss through functional redundancy in arthropod communities may be depleted at some point; (iv) Measures of ecosystem functions are limited by methodological filters, so that changes may be captured incompletely. Although much uncertainty of the effects of climate and land-use change on ecosystem functions remains, actions to halt biodiversity loss and to interfere with natural processes in an environmentally friendly way, e.g. reduction of herbivory on crops, are urgently needed. With this thesis, I contribute options to the environment-friendly regulation of herbivory, which are at least to some extent climate resilient, and at the same time make a contribution to halt biodiversity loss. Yet, more research and a transformation process is needed to make human action more sustainable. In terms of crop protection, this means that the most common method of treating pests with fast-acting pesticides is not necessarily the most sustainable. To realize sustainable strategies, collective efforts will be needed targeted at crop damage prevention through reducing pest populations and densities in the medium to long term. The sooner we transform human action from environmentally damaging to biodiversity promoting, the higher is our insurance asset that secures human well-being under a changing climate. / Kapitel 1 – Allgemeine Einleitung Intensive Landnutzung und Klimawandel sind die Hauptursachen des globalen Rückgangs der biologischen Vielfalt. Diese ist jedoch wichtig für das menschliche Wohlergehen, da wir von der Verfügbarkeit von trinkbarem Wasser, Nahrungsmitteln und weiteren Leistungen der Natur abhängig sind. Dazu leistet jede Art einen gewissermaßen einzigartigen Beitrag. Darüber hinaus kommen verschiedene Arten unterschiedlich gut mit umweltbedingten Stressfaktoren wie z.B. dem Klimawandel aus. Dadurch ist die biologische Vielfalt sowohl der "Motor" als auch die "Versicherung" für das menschliche Wohlergehen in einem sich verändernden Klima. Hier untersuche ich die Auswirkungen von Temperatur und Landnutzung auf Pflanzenfraß („Herbivorie“, Kapitel 2), Räuber-Beute-Beziehungen („Prädation“, Kapitel 3) und die Regulation von Schädlingen im Raps (Kapitel 4), und betrachte gleichzeitig Merkmale von Lebensräumen (z.B. Reichtum an Pflanzenarten und -familien, Nähe zu unterschiedlichen Lebensraumtypen) und Landschaften (z.B. Vielfältigkeit der Landschaft, Anteil der Rapsanbaufläche) als mögliche Ansatzpunkte für Anpassungsstrategien an den Klimawandel. Abschließend erörtere ich die Gemeinsamkeiten und Unterschiede der Faktoren, die Herbivorie, Prädation und Schädlingskontrolle beeinflussen, ordne diese in den Kontext des Klimawandels als vielseitiges Phänomen ein, und betone mögliche Ansatzpunkte für den nachhaltigen Pflanzenschutz (Kapitel 5). Kapitel 2 – Pflanzenreichtum, Landnutzung und Temperatur beeinflussen die Schädigung verschiedener funktioneller Pflanzengruppen durch blattfressende Wirbellose unterschiedlich Wirbellose Pflanzenfresser (z.B. Grashüpfer) sind temperaturempfindlich. Steigende Temperaturen erhöhen ihre Stoffwechselrate und damit ihren Bedarf an kohlenstoffreichen im Vergleich zu proteinreichen Ressourcen, was zu einer Ernährungsumstellung von pflanzenfressenden Generalisten führen kann. Hier erfassten wir die Blattschädigung durch kauende Wirbellose an drei funktionellen Pflanzengruppen (Leguminosen, andere krautige Pflanzen, Gräser), welche sich in ihrem C:N (Kohlenstoff:Stickstoff) Verhältnis unterscheiden. Die Erfassung führten wir entlang von räumlichen Temperatur- und Landnutzungsgradienten in offener krautiger Vegetation angrenzend an verschiedene Lebensraumtypen (Forst, Grünland, Ackerfläche, Siedlung) durch. Die Blattschädigung verschiedener funktioneller Pflanzengruppen variierte stark und war an Leguminosen höher als an krautigen Pflanzen oder Gräsern, außer auf Offenflächen im Forst. Dort waren die Blattschädigungen der funktionellen Pflanzengruppen ähnlich und die Schädigung an Leguminosen niedriger als im Grünland. Auch das Vorhandensein vieler Pflanzenfamilien verringerte die Blattschädigung an Leguminosen. Dies legt nahe, dass Offenflächen im Forst und vielfältige Vegetation einen gewissen Schutz gegen Blattschädigung an manchen Pflanzenfamilien (z.B. Leguminoses) bieten. Dies könnte im Rahmen des Artenschutzes einen Beitrag zum Erhalt geschützter Arten leisten. Insgesamt überwogen die Auswirkungen des vorherrschenden Lebensraumtyps in der näheren Umgebung und vielfältiger Vegetation zum jetzigen Zeitpunkt den Einfluss von Temperatur und großräumiger Landnutzung (z.B. Grünlandanteil, Vielfältigkeit der Landschaft) auf die Blattschädigung an Leguminosen, krautigen Pflanzen und Gräsern. Kapitel 3 – Vielfältige Landschaften und die lokale Temperatur, jedoch nicht das Klima, beeinflussen die Prädationsleistung von Gliederfüßern in verschiedenen Lebensräumen Pflanzenfressende Insekten unterliegen der Top-Down-Regulation durch räuberisch-lebende Gliederfüßer. Der Beitrag, den diese zur Top-Down-Regulation leisten hängt jedoch unter anderem von der Zusammensetzung ihrer Artengemeinschaft und von ihrem Verhalten ab. Beides wird durch Temperatur, Pflanzenreichtum und Landnutzung beeinflusst. Wie sich das Zusammenspiel dieser Faktoren auf die Regulationsleistung von Räubern auswirkt war bis dato unbekannt. Deshalb untersuchten wir die Attackierung von räuberischen Gliederfüßern auf Beuteattrappen (Knetraupen) entlang von Temperatur- und Landnutzungsgradienten. Auf Studienflächen mit niedriger lokaler Mitteltemperatur (≤ 7°C) wurde oft keine einzige Knetraupe attackiert, was sich möglicherweise auf die temperatureabhängige Inaktivität von Gliederfüßern zurückführen lässt. Die Durchschnittstemperatur im mehrjährigen Mittel, das Pflanzenreichtum und der vorherrschende Lebensraumtyp hingegen zeigten keinen substanziellen Einfluss auf die Attackierung der Knetraupen durch räuberische Gliederfüßer. Am höchsten waren die Attackierungsraten in vielfältigen Landschaften (2-km Skala) unabhängig vom lokal vorherrschenden Lebensraumtyp. Da vielfältige Landschaften, nicht jedoch die Durchschnittstemperatur im mehrjährigen Mittel, die Attackierungsraten beeinflussten, können Maßnahmen zur Diversifizierung von Landschaften möglicherweise unabhängig von moderat steigenden mehrjährigen Mitteltemperaturen in naher Zukunft die Top-Down-Regulation von Pflanzenfressern begünstigen. Kapitel 4 – Schädlingskontrolle und Ertrag im Winterraps sind von der räumlich-zeitlichen Dynamik der Rapsanbaufläche sowie vom Blühzeitpunkt abhängig: Implikationen für die globale Erwärmung Winterraps ist eine wichtige Ölpflanze in Europa, doch die Erträge werden insbesondere durch Schädlinge wie Rapsglanzkäfer und Stängelrüssler gemindert. Die Schädigung durch den Rapsglanzkäfer ist abhängig vom Schädlingsaufkommen, aber auch vom Befallszeitpunkt in Bezug zum Entwicklungsstadium des Winterraps, wobei das Knospenstadium besonders empfindlich ist. Die Entwicklung von Raps und Rapsglanzkäfer ist temperaturabhängig, wohingegen Temperatureffekte auf Schädlingsabundanzen unbekannt sind, sodass höhere Temperaturen sowohl Chancen als auch Gefahren mitsichbringen. Wir führten Messungen an Winterrapspflanzen (Blühzeitpunkt, Samenertrag) und zwei seiner Hauptschädlinge (Rapsglanzkäfer, Stängelrüssler) erstmalig entlang von Landnutzungs- und Temperaturgradienten durch. Der Befall mit Stängelrüsslern wurde nicht von den untersuchten Temperatur- und Landschaftsparametern beeinflusst und die natürliche Schädlingskontrolle von Rapsglanzkäferlarven in Bezug auf Parasitierungsraten war mit Ausnahme von drei von 29 Standorten gering (< 30%). Nichtsdestotrotz konnten wir Bedingungen identifizieren, die niedrige Befallszahlen mit Rapsglanzkäfern und hohe Samenerträge begünstigen. Geringe Rapsglanzkäferdichten wurden durch eine konstante Rapsanbaufläche relativ zum Vorjahr (5-km Skala) begünstigt, wohingegen eine starke Reduktion in der Anbaufläche (> 40%) zu hohem Befall führte (Konzentrationseffekt). Aufgrund von Trockenheit in warmen Regionen rund um den Saattermin trat dies häufiger in warmen Regionen auf, was zu einem stärkeren Befall mit Rapsglanzkäfern in diesen Regionen beitrug. In wärmeren Regionen kam der Raps jedoch auch früher zur Blüte, was es ihm vermutlich ermöglichte, dem Rapsglanzkäferbefall im empfindlichsten Knospenstadium einigermaßen zu entgehen. Dies zeigte sich auch daran, dass eine frühe Blüte, nicht jedoch höhere Temperaturen, zu höheren Erträgen führte. Eine frühe Blüte (z.B. durch Sortenwahl) und die jahresübergreifende Koordination der Rapsanbaufläche bieten Möglichkeiten für die umweltfreundliche Schädlingskontrolle von Rapsglanzkäfern. Kapitel 5 – Allgemeine Diskussion Der durch den Menschen verursachte Landnutzungs- und Klimawandel stellt eine große Gefahr für die biologische Vielfalt und damit auch für die Funktionalität von Ökosystemen dar, obwohl ich zeigen konnte, dass natürliche Abläufe wie Pflanzenfraß und Räuber-Beute-Beziehungen kaum auf Temperaturunterschiede entlang eines räumlichen Gradients reagierten. Dennoch ist es wichtig mehrere Punkte zu beachten: (i) Die Rate, mit der sich die Erde erwärmt, wird Arten in Zukunft weniger Zeit lassen sich an die herschende Temperatur anzupassen; (ii) Neben der Erderwärmung werden sich viele weitere Aspekte des Klimas verändern; (iii) Die Aufrechterhaltung von natürlichen Abläufen unter Artenverlust durch funktionale Redundanz könnte irgendwann erschöpft sein; (iv) Die Messung natürlicher Abläufe ist durch methodische Filter limitiert, sodass Änderungen unter Umständen unvollständig abgebildet werden. Obwohl Ungewissheiten bezüglich der Auswirkungen des Landnutzungs- und Klimawandels auf natürliche Abläufe bestehen bleiben, werden dringlich Maßnahmen benötigt, die zum Erhalt der biologischen Vielfalt beitragen und die es ermöglichen umweltfreundlich in natürliche Abläufe einzugreifen wie z.B. die Abmilderung von Pflanzenfraß an Kulturpflanzen. Mit dieser Doktorarbeit, zeige ich Ansatzpunkte für Maßnahmen zur umweltfreundlichen Regulation von Pflanzenfraß auf, die zumindest zu einem gewissen Grad Klima-resilient sind und zugleich einen Beitrag zur Eindämmung des Artensterbens leisten. Um das menschliche Handeln nachhaltiger zu machen, bedarf es neben weiterer Forschung eines Transformationsprozesses. Für den Pflanzenschutz bedeutet dies, dass die gängigste Methode der Schädlingsbekämpfung mit schnell wirkenden Pestiziden nicht unbedingt die nachhaltigste ist. Um nachhaltige Strategien zu realisieren werden gemeinschaftliche Bemühungen nötig sein, die sich der Vorbeugung von Schäden an Kulturpflanzen durch die mittel- bis langfristigen Reduktion von Schädlingspopulationen und -dichten widmen. Je früher wir das menschliche Handeln von umweltschädigend zu biodiversitätsfördernd umwandeln, desto größer ist unser “Versicherungswert”, der das menschliche Wohlergehen in einem sich änderndem Klima gewährleistet.
8

Fränkische Waldgemeinschaften im Klimawandel. Eine kulturanthropologische Studie / Franconian forest communities under climate change. A cultural anthropological study

Hoss, Laura January 2022 (has links) (PDF)
Im Zeitalter des Anthropozäns rückt die Klimakrise ins Zentrum einer Betrachtung der vielschichtigen Beziehung zwischen Mensch und Wald. Die Auswirkungen des Klimawandels beeinflussen und verändern das Leben von Pflanzen und Tieren ebenso wie den menschlichen Blick auf den Wald und das forstliche Handeln in ihm. Angesichts der menschengemachten Klimaveränderungen geht die Autorin in der vorliegenden Multispezies-Ethnografie der Frage nach, wie der komplexe Wirtschafts-, Lebens- und Arbeitsort Wald speziesübergreifend geformt und gestaltet wird. Mit dem Verweis auf die Rolle tierlicher sowie pflanzlicher Agency werden dabei die Verflechtungen und gegenseitigen Abhängigkeiten der im Wald lebenden und mit dem Wald arbeitenden menschlichen wie mehr-als-menschlichen Akteur*innen in den Mittelpunkt gestellt. Zwischen klimawandelbedingten (Un)ordnungen, Störungen und Unsicherheiten ergeben sich Fragen nach dem Verhältnis zwischen menschlicher Nutzung und Bewahrung ebenso wie nach dem konkreten Umgang mit der Krise im Wald. Dabei eröffnet sich ein Blick auf die erforschten unterfränkischen Wälder als historisch und speziesübergreifend geprägte NaturenKulturen-Räume, in denen mögliche Zukünfte des gemeinsamen Lebens und Werdens ausgehandelt und gestaltet werden. / In the age of the Anthropocene, the climate crisis moves to the center of a consideration of the multi-layered relationship between humans and forests. The effects of climate change influence and change the lives of plants and animals as well as the human view of the forest and forestry actions in it. In the face of human-induced climate change, the author explores in this multispecies ethnography how the complex economic, living, and working place of forests is shaped and molded across species. With reference to the role of animal as well as plant agency, the interconnections and interdependencies of the human and more-than-human actors living in and working with the forest are brought into focus. Between climate change-induced (dis)order, disturbance and uncertainty, questions arise about the relationship between human use and preservation as well as about the concrete handling of the crisis in the forest. This opens up a view of the researched Lower Franconian forests as historically and cross-species shaped nature-culture spaces, in which possible futures of living and becoming are negotiated and shaped.
9

Eine raum-zeitliche Modellierung der Kohlenstoffbilanz mit Fernerkundungsdaten auf regionaler Ebene in Westafrika / Spatio-temporal modelling of the cabon budget in West Africa with remote sensing data on a regional scale

Machwitz, Miriam January 2010 (has links) (PDF)
Der Klimawandel und insbesondere die globale Erwärmung gehören aktuell zu den größten Herausforderungen an Politik und Wissenschaft. Steigende CO2-Emissionen sind hierbei maßgeblich für die Klimaerwärmung verantwortlich. Ein regulierender Faktor beim CO2-Austausch mit der Atmosphäre ist die Vegetation, welche als CO2-Senke aber auch als CO2-Quelle fungieren kann. Diese Funktionen können durch Analysen der Landbedeckungsänderung in Kombination mit Modellierungen der Kohlenstoffbilanz quantifiziert werden, was insbesondere von aktuellen und zukünftigen politischen Instrumenten wie CDM (Clean Development Mechanism) oder REDD (Reducing Emissions from Deforestation and Degradation) gefordert wird. Vor allem in Regionen mit starker Landbedeckungsänderung und hoher Bevölkerungsdichte sowie bei geringem Wissen über die Produktivität und CO2-Speicherpotentiale der Vegetation, bedarf es einer Erforschung und Quantifizierung der terrestrischen Kohlenstoffspeicher. Eine Region, für die dies in besonderem Maße zutrifft, ist Westafrika. Jüngste Studien haben gezeigt, dass sich einerseits die Folgen des Klimawandels und Umweltveränderungen sehr stark in Westafrika auswirken werden und andererseits Bevölkerungswachstum eine starke Änderung der Landbedeckung für die Nutzung als agrarische Fläche bewirkt hat. Folglich sind in dieser Region die terrestrischen Kohlenstoffspeicher durch Ausdehnung der Landwirtschaft und Waldrodung besonders gefährdet. Große Flächen agieren anstelle ihrer ursprünglichen Funktion als CO2-Senke bereits als CO2-Quelle. [...] / Global warming associated with climate change is one of the greatest challenges of today's world. One regulating factor of CO2 exchange with the atmosphere is the vegetation cover. Measurements of land cover changes in combination with modeling of the carbon balance can therefore contribute to determining temporal variations of CO2 sources and sinks, which is an essential necessity of existing and prospective political instruments like CDM (Clean Development Mechanism) or REDD (Reducing Emissions from Deforestation and Degradation). The need for quantifiable terrestrial carbon stocks is especially high for regions, where rates of land cover transformation and population density are high and knowledge on vegetation productivity is low. One region which is characterized by these criteria is West Africa. Therefore, carbon stocks in this region are seriously endangered by land cover change like the expansion of agriculture and forest logging. Large areas already act as carbon sources on a yearly basis instead of their previous function as carbon sink. Since only a few studies have analyzed the terrestrial carbon stocks in Africa and especially regional analysis in West Africa are missing, the following study focuses on regional scale modeling of the actual terrestrial carbon stocks. Additionally, the potential carbon stocks of unmanaged land cover and the potential for CO2 payments have been analyzed in this work. To quantify and assess carbon fluxes as well as the loss of carbon, net primary productivity of vegetation has been modeled, based on the plants characteristics to fix carbon from the atmosphere during photosynthesis. Modeling vegetation dynamics and net primary productivity has been realized by using MODIS 250m time series for semi-humid and semi-arid savanna ecosystems in West Africa. This study aimed to quantify CO2 exchanges of the Savanna regions in the Volta basin by applying and adapting the Regional Biomass Model (RBM). The RBM was developed by Jochen Richters (2005) at a resolution of 1000m for the Namibian Kaokoveld. In this study the model was optimized to the scale of 232m to consider the heterogeneous landscape in West Africa (RBM+). New input parameters with higher accuracies and resolution were generated instead of using the global standard products. The most important parameters for the modeling are FPAR and the fractional cover of herbaceous and woody vegetation. To enhance the MODIS FPAR product, linear interpolation and downscaling algorithms were applied. The main objective of the downscaling is a better representation of the finely scattered vegetation by the 232m resolution FPAR. The second optimized parameter, the fractional cover of herbaceous and woody vegetation was represented by the Vegetation Continuous Fields product (VCF) from MODIS in the originally version of the RBM. This global product reflects the vegetation structure of West Africa poorly, since few high resolution training data is available for this region, and the dynamic savanna vegetation can hardly be classified by not regionally adapted methods. Additionally, the data is only available with 500m resolution. Therefore, in this study a new product with 232m resolution was developed which represents the spatial heterogeneity well and, due to the regional adaptation, shows higher accuracies. The percentage cover of woody and herbaceous vegetation and bare soil on 232m MODIS data was calculated in a multi scale approach. Based on very high resolution data, represented by Quickbird and Ikonos with 0.6-4m resolution, and high resolution data from Landsat with 30m resolution, the percentage coverage was estimated for representative focus regions. These classifications were used as a training data set to determine the percentage coverage on the 232m scale with MODIS time series for the whole study region. Based on these optimized and adapted input parameters, the net primary productivity was modeled. Data from a meteorological station and an Eddy-Covariance-Flux allowed a detailed validation of the input parameters and of the model results. The model led to good results as it only overestimated the net primary productivity for the two analyzed years 2005 and 2006 by 8.8 and 2.0 %, respectively. The second aim of the study was an analysis of the potential for long term terrestrial carbon sinks. Classifications of the actual and of the potential land cover were calculated for this analysis. Considering the overall long time CO2 fixation behavior of trees, which depends on their age, longterm carbon stocks for 100 years were simulated. As carbon fixing could be paid by emission trading, which is in future depending on the political Post-Kyoto programs, potential alternative income was calculated with different price scenarios for the three countries. A comparison with the gross domestic products of these countries and with developing aid, showed the significance of CO2 trading in this region.
10

Water Balance Dynamics of Cyprus - Actual State and Impacts of Climate Change / Dynamik der Wasserbilanz von Zypern - Aktueller Zustand und Einflüsse des Klimawandels

Dünkeloh, Armin January 2011 (has links) (PDF)
A completely revised and enhanced version of the water balance model MODBIL of the regional water balance dynamics of Cyprus was developed for this study. The model is based on a physical, process-oriented, spatially distributed concept and is applied for the calculation of all important water balance components of the island for the time period of 1961-2004. The calibrated results are statistically analysed and visualised for the whole island area, and evaluated with respect to the renewability of natural water resources. Climate variability and changes of the past decades are analysed with regard to their influence on water balances. A further part of the study focusses on the simulation of impacts of potential climate change. The water balances are simulated under changing climatic conditions on the base of theoretical precipitation, temperature and relative humidity changes and the revealed impacts on the water balances and renewable resources are discussed. Furthermore, a first principal water balance scenario is developed for the assessment of the regional hydrological changes expected for Cyprus by the end of the 21st century. The scenarios are based on recently calculated climate change assessments for this part of the Mediterranean, under an assumed further increase of greenhouse gasses in the atmosphere. / Eine vollständig überarbeitete und erweiterte Version des Wasserhaushaltsmodells MODBIL ist für die Untersuchung des Wasserhaushalts auf Zypern entwickelt worden. Auf der Basis dieses physikalischen, prozessorientierten und flächendifferenzierten Modells werden alle wesentlichen Wasserhaushaltskomponenten für die gesamte Insel im Zeitraum 1961-2004 berechnet, die Ergebnisse statistisch und visuell ausgewertet sowie hinsichtlich der Erneuerbarkeit der natürlichen Wasserressourcen bewertet. Weiterhin erfolgt die Untersuchung von Klimavariabilität und Trends der letzten Jahrzehnte und deren Einfluss auf die Wasserbilanzen. Im zweiten Teil dieser Studie werden Auswirkungen potentieller Klimaänderungen anhand simulierter Wasserbilanzen unter veränderten Niederschlags-, Temperatur-, und Luftfeuchtebedingungen ermittelt und hinsichtlich deren Einfluss auf die erneuerbaren Wasserressourcen beurteilt. Abschließend folgt eine erste prinzipielle Simulation der hydrologischen Veränderungen, die für Zypern bis zum Ende des 21. Jahrhunderts zu erwarten sind. Diese Simulation basiert auf aktuellen Klimawandelabschätzungen für diese Teilregion des Mittelmeerraumes unter Verwendung eines Szenarios fortschreitender Zunahme von Treibhausgasen in der Atmosphäre.

Page generated in 0.0928 seconds