Made available in DSpace on 2015-05-15T11:46:23Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 590579 bytes, checksum: 4c4cd48135a64532856a71b6336c52f4 (MD5)
Previous issue date: 2014-07-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we studied existence of positive solutions for an elliptic problem with critical Sobolev exponent
(-u = up + f(x; u) em u = 0 sobre @ that vanishes on the boundary of a bounded domain of Rn. The nonlinearity f(x; u) has subcritical growth. This is done by showing that the minimax level is below a constant that depends only on the dimension of the domain and the best Sobolev constant. / Nesta dissertação procuramos abordar a existência de soluções positivas para um problema elíptico com expoente crítico de Sobolev
(-u = up + f(x; u) em u = 0 sobre @ onde é um domínio limitado do Rn. A não-linearidade de f(x; u) possui crescimento subcrítico. Para isso mostraremos que o nível minimax fica abaixo de uma constante que depende apenas da dimensão do domínio e da melhor constante de Sobolev.
Identifer | oai:union.ndltd.org:IBICT/oai:tede.biblioteca.ufpb.br:tede/7451 |
Date | 31 July 2014 |
Creators | Ricardo, Cleiton de Lima |
Contributors | Ribeiro, Bruno Henrique Carvalho |
Publisher | Universidade Federal da Paraíba, Programa de Pós-Graduação em Matemática, UFPB, BR, Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFPB, instname:Universidade Federal da Paraíba, instacron:UFPB |
Rights | info:eu-repo/semantics/openAccess |
Relation | 666657583566969084, 600, 600, 600, 600, -78633126427147401, -7090823417984401694, 2075167498588264571 |
Page generated in 0.0019 seconds