Nos últimos anos têm sido desenvolvidos modelos de regressão beta, que têm uma variedade de aplicações práticas como, por exemplo, a modelagem de taxas, razões ou proporções. No entanto, é comum que dados na forma de proporções apresentem zeros e/ou uns, o que não permite admitir que os dados provêm de uma distribuição contínua. Nesta tese, são propostas, distribuições de mistura entre uma distribuição beta e uma distribuição de Bernoulli, degenerada em zero e degenerada em um para modelar dados observados nos intervalos [0, 1], [0, 1) e (0, 1], respectivamente. As distribuições propostas são inflacionadas no sentido de que a massa de probabilidade em zero e/ou um excede o que é permitido pela distribuição beta. Propriedades dessas distribuições são estudadas, métodos de estimação por máxima verossimilhança e momentos condicionais são comparados. Aplicações a vários conjuntos de dados reais são examinadas. Desenvolvemos também modelos de regressão beta inflacionados assumindo que a distribuição da variável resposta é beta inflacionada. Estudamos estimação por máxima verossimilhança. Derivamos expressões em forma fechada para o vetor escore, a matriz de informação de Fisher e sua inversa. Discutimos estimação intervalar para diferentes quantidades populacionais (parâmetros de regressão, parâmetro de precisão) e testes de hipóteses assintóticos. Derivamos expressões para o viés de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros, possibilitando a obtenção de estimadores corrigidos que são mais precisos que os não corrigidos em amostras finitas. Finalmente, desenvolvemos técnicas de diagnóstico para os modelos de regressão beta inflacionados, sendo adotado o método de influência local baseado na curvatura normal conforme. Ilustramos a teoria desenvolvida em um conjuntos de dados reais. / The last years have seen new developments in the theory of beta regression models, which are useful for modelling random variables that assume values in the standard unit interval such as proportions, rates and fractions. In many situations, the dependent variable contains zeros and/or ones. In such cases, continuous distributions are not suitable for modeling this kind of data. In this thesis we propose mixed continuous-discrete distributions to model data observed on the intervals [0, 1],[0, 1) and (0, 1]. The proposed distributions are inflated beta distributions in the sense that the probability mass at 0 and/or 1 exceeds what is expected for the beta distribution. Properties of the inflated beta distributions are given. Estimation based on maximum likelihood and conditional moments is discussed and compared. Empirical applications using real data set are provided. Further, we develop inflated beta regression models in which the underlying assumption is that the response follows an inflated beta law. Estimation is performed by maximum likelihood. We provide closed-form expressions for the score function, Fishers information matrix and its inverse. Interval estimation for different population quantities (such as regression parameters, precision parameter, mean response) is discussed and tests of hypotheses on the regression parameters can be performed using asymptotic tests. We also derive the second order biases of the maximum likelihood estimators and use them to define bias-adjusted estimators. The numerical results show that bias reduction can be effective in finite samples. We also develop a set of diagnostic techniques that can be employed to identify departures from the postulated model and influential observations. To that end, we adopt the local influence approach based in the conformal normal curvature. Finally, we consider empirical examples to illustrate the theory developed.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19102009-145726 |
Date | 04 April 2008 |
Creators | Raydonal Ospina Martinez |
Contributors | Silvia Lopes de Paula Ferrari, Francisco Cribari Neto, Francisco José de Azevêdo Cysneiros, Edwin Moises Marcos Ortega, Klaus Leite Pinto Vasconcellos |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds