Return to search

Optimizing Bike Sharing System Flows using Graph Mining, Convolutional and Recurrent Neural Networks

A Bicycle-sharing system (BSS) is a popular service scheme deployed in cities of different sizes around the world. Although docked bike systems are its most popular model used, it still experiences a number of weaknesses that could be optimized by investigating bike sharing network properties and evolution of obtained patterns.Efficiently keeping bicycle-sharing system as balanced as possible is the main problem and thus, predicting or minimizing the manual transportation of bikes across the city is the prime objective in order to save logistic costs for operating companies.The purpose of this thesis is two-fold; Firstly, it is to visualize bike flow using data exploration methods and statistical analysis to better understand mobility characteristics with respect to distance, duration, time of the day, spatial distribution, weather circumstances, and other attributes. Secondly, by obtaining flow visualizations, it is possible to focus on specific directed sub-graphs containing only those pairs of stations whose mutual flow difference is the most asymmetric. By doing so, we are able to use graph mining and machine learning techniques on these unbalanced stations.Identification of spatial structures and their structural change can be captured using Convolutional neural network (CNN) that takes adjacency matrix snapshots of unbalanced sub-graphs. A generated structure from the previous method is then used in the Long short-term memory artificial recurrent neural network (RNN LSTM) in order to find and predict its dynamic patterns.As a result, we are predicting bike flows for each node in the possible future sub-graph configuration, which in turn informs bicycle-sharing system owners in advance to plan accordingly. This combination of methods notifies them which prospective areas they should focus on more and how many bike relocation phases are to be expected. Methods are evaluated using Cross validation (CV), Root mean square error (RMSE) and Mean average error (MAE) metrics. Benefits are identified both for urban city planning and for bike sharing companies by saving time and minimizing their cost. / Lånecykel avser ett system för uthyrning eller utlåning av cyklar. Systemet används främst i större städer och bekostas huvudsakligen genom tecknande av ett abonnemang.Effektivt hålla cykel andelssystem som balanseras som möjligt huvud problemand därmed förutsäga eller minimera manuell transport av cyklar över staden isthe främsta mål för att spara logistikkostnaderna för drift companies.Syftet med denna avhandling är tvåfaldigt.För det första är det att visualisera cykelflödet med hjälp av datautforskningsmetoder och statistisk analys för att bättre förstå rörlighetskarakteristika med avseende på avstånd, varaktighet, tid på dagen, rumsfördelning, väderförhållanden och andra attribut.För det andra är det vid möjliga flödesvisualiseringar möjligt att fokusera på specifika riktade grafer som endast innehåller de par eller stationer vars ömsesidiga flödesskillnad är den mest asymmetriska.Genom att göra det kan vi anvnda grafmining och maskininlärningsteknik på dessa obalanserade stationer, och använda konjunktionsnurala nätverk (CNN) som tar adjacency matrix snapshots eller obalanserade subgrafer.En genererad struktur från den tidigare metoden används i det långa kortvariga minnet artificiella återkommande neurala nätverket (RNN LSTM) för att hitta och förutsäga dess dynamiska mönster.Som ett resultat förutsäger vi cykelflden för varje nod i den eventuella framtida underkonfigurationen, vilket i sin tur informerar cykeldelningsägare om att planera i enlighet med detta.Denna kombination av metoder meddelar dem vilka framtida områden som bör inriktas på mer och hur många cykelflyttningsfaser som kan förväntas.Metoder utvärderas med hjälp av cross validation (CV), Root mean square error (RMSE) och Mean average error (MAE) metrics.Fördelar identifieras både för stadsplanering och för cykeldelningsföretag genom att spara tid och minimera kostnaderna.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-257783
Date January 2019
CreatorsLjubenkov, Davor
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2019:530

Page generated in 0.0029 seconds