Return to search

Thermodynamic and hydrodynamic studies on bioelectrochemical devices by experiment and simulation

Titre de l'écran-titre (visionné le 24 juillet 2023) / Les systèmes bioélectrochimiques (BES) se diversifient dans des applications ciblées, des architectures de dispositifs et des méthodologies pour les étudier. Cette thèse aborde BES dans une perspective large, impliquant à la fois des travaux expérimentaux et des simulations, pour explorer différentes pistes d'optimisation. La thèse commence par une présentation rigoureuse du contexte actuel dans le domaine de recherche du BES au chapitre 1. Puis, au chapitre 2, les concepts pratiques et théoriques utilisés dans ce travail pour étudier le BES sont exposés : à savoir la microfluidique, l'électrochimie et la dynamique des fluides computationnelle. Dans le chapitre 3, des expériences et des simulations sont combinées pour démontrer le transport de masse dans un BES microfluidique à trois électrodes en utilisant différents modes d'écoulement, y compris une nouvelle idée appelée écoulement perpendiculaire. Ensuite, des simulations sont utilisées dans le chapitre 4 pour prédire le transport de masse dans une pile à combustible microfluidique microbienne avec et sans membrane de séparation. Dans le chapitre 5, une nouvelle méthode pour introduire une membrane de séparation dans le MFC microfluidique avec un espacement des électrodes sous-millimétrique est démontrée expérimentalement. Les travaux sont soutenus par d'importants travaux de simulation pour élucider le transport de masse et le potentiel de contamination croisée dans des conditions d'écoulement réalistes, qui incluent des conditions de fonctionnement non optimales telles que des débits déséquilibrés. Les résultats expérimentaux ont montré que même avec l'ajout d'une membrane, la résistance interne pouvait être considérablement réduite par rapport à un dispositif à large espacement interélectrodes sans membrane. L'amélioration connexe des performances de la membrane microfluidique MFC dans ce travail marque une nouvelle référence à haut rendement pour la culture pure microfluidique MFC. Enfin, l'effet des profils de température dynamiques sur les MFC de sol et de liquide est exploré au chapitre 6. Ici, nous montrons expérimentalement que les profils de température dynamiques peuvent améliorer les sorties de puissance et de courant dans un MFC de sol jusqu'à 400 % et 200 %, respectivement. Cependant, de telles améliorations n'ont pas été observées dans le cas d'un liquide de culture pur MFC dans une cellule H. La thèse se termine par une synthèse des travaux et des perspectives. / Bioelectrochemical systems (BES) is diversifying in targeted applications, device architectures and methodologies to study them. This thesis looks at BES from a broad perspective, involving both experimental work and simulations, to explore different avenues for optimization. The thesis starts with a rigorous presentation of the current context in the BES research area in Chapter 1. Then, in Chapter 2, practical and theoretical concepts in BES and supporting technologies used to study them in this work, namely microfluidics, electrochemistry, and computational fluid dynamics. In Chapter 3, experiments and simulations are combined to demonstrate mass transport in three-electrode microfluidic BES using different flow-modes, including a new idea called perpendicular flow. Next, simulations are used in Chapter 4 to predict mass transport in a microfluidic microbial fuel cell with and without a separation membrane. In Chapter 5, a new method for introducing a separation membrane into the microfluidic microbial fuel cell (MFC) with sub-millimeter electrode spacing is demonstrated experimentally. The work is supported by significant simulation work to elucidate mass transport and potential for cross-contamination under realistic flow conditions, which include non-optimal operational conditions such as imbalanced flow rates. Experimental results showed that even with the addition of a membrane, the internal resistance could be significantly reduced compared to a wide inter-electrode spaced device with no membrane. Related improvement to the membrane microfluidic MFC performance in this work mark a new high-output benchmark for pure culture microfluidic MFC. Lastly, the effect of dynamic temperature profiles on both soil and liquid MFCs are explored in Chapter 6. Here we show experimentally that dynamic temperature profiles can improve power and current outputs in a soil MFC by up to 400% and 200%, respectively. However, such improvements were not observed in the case of a pure culture liquid MFC in an H-cell. The thesis concludes with a summary of the work and an outlook for the future.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/121704
Date28 July 2023
CreatorsGong, Lingling
ContributorsGreener, Jesse
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxxiii, 215 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0017 seconds