Spelling suggestions: "subject:"bioélectrochimie."" "subject:"bioélectrochimique.""
1 |
Thermodynamic and hydrodynamic studies on bioelectrochemical devices by experiment and simulationGong, Lingling 23 October 2023 (has links)
Titre de l'écran-titre (visionné le 24 juillet 2023) / Les systèmes bioélectrochimiques (BES) se diversifient dans des applications ciblées, des architectures de dispositifs et des méthodologies pour les étudier. Cette thèse aborde BES dans une perspective large, impliquant à la fois des travaux expérimentaux et des simulations, pour explorer différentes pistes d'optimisation. La thèse commence par une présentation rigoureuse du contexte actuel dans le domaine de recherche du BES au chapitre 1. Puis, au chapitre 2, les concepts pratiques et théoriques utilisés dans ce travail pour étudier le BES sont exposés : à savoir la microfluidique, l'électrochimie et la dynamique des fluides computationnelle. Dans le chapitre 3, des expériences et des simulations sont combinées pour démontrer le transport de masse dans un BES microfluidique à trois électrodes en utilisant différents modes d'écoulement, y compris une nouvelle idée appelée écoulement perpendiculaire. Ensuite, des simulations sont utilisées dans le chapitre 4 pour prédire le transport de masse dans une pile à combustible microfluidique microbienne avec et sans membrane de séparation. Dans le chapitre 5, une nouvelle méthode pour introduire une membrane de séparation dans le MFC microfluidique avec un espacement des électrodes sous-millimétrique est démontrée expérimentalement. Les travaux sont soutenus par d'importants travaux de simulation pour élucider le transport de masse et le potentiel de contamination croisée dans des conditions d'écoulement réalistes, qui incluent des conditions de fonctionnement non optimales telles que des débits déséquilibrés. Les résultats expérimentaux ont montré que même avec l'ajout d'une membrane, la résistance interne pouvait être considérablement réduite par rapport à un dispositif à large espacement interélectrodes sans membrane. L'amélioration connexe des performances de la membrane microfluidique MFC dans ce travail marque une nouvelle référence à haut rendement pour la culture pure microfluidique MFC. Enfin, l'effet des profils de température dynamiques sur les MFC de sol et de liquide est exploré au chapitre 6. Ici, nous montrons expérimentalement que les profils de température dynamiques peuvent améliorer les sorties de puissance et de courant dans un MFC de sol jusqu'à 400 % et 200 %, respectivement. Cependant, de telles améliorations n'ont pas été observées dans le cas d'un liquide de culture pur MFC dans une cellule H. La thèse se termine par une synthèse des travaux et des perspectives. / Bioelectrochemical systems (BES) is diversifying in targeted applications, device architectures and methodologies to study them. This thesis looks at BES from a broad perspective, involving both experimental work and simulations, to explore different avenues for optimization. The thesis starts with a rigorous presentation of the current context in the BES research area in Chapter 1. Then, in Chapter 2, practical and theoretical concepts in BES and supporting technologies used to study them in this work, namely microfluidics, electrochemistry, and computational fluid dynamics. In Chapter 3, experiments and simulations are combined to demonstrate mass transport in three-electrode microfluidic BES using different flow-modes, including a new idea called perpendicular flow. Next, simulations are used in Chapter 4 to predict mass transport in a microfluidic microbial fuel cell with and without a separation membrane. In Chapter 5, a new method for introducing a separation membrane into the microfluidic microbial fuel cell (MFC) with sub-millimeter electrode spacing is demonstrated experimentally. The work is supported by significant simulation work to elucidate mass transport and potential for cross-contamination under realistic flow conditions, which include non-optimal operational conditions such as imbalanced flow rates. Experimental results showed that even with the addition of a membrane, the internal resistance could be significantly reduced compared to a wide inter-electrode spaced device with no membrane. Related improvement to the membrane microfluidic MFC performance in this work mark a new high-output benchmark for pure culture microfluidic MFC. Lastly, the effect of dynamic temperature profiles on both soil and liquid MFCs are explored in Chapter 6. Here we show experimentally that dynamic temperature profiles can improve power and current outputs in a soil MFC by up to 400% and 200%, respectively. However, such improvements were not observed in the case of a pure culture liquid MFC in an H-cell. The thesis concludes with a summary of the work and an outlook for the future.
|
2 |
Caractérisation de pores protons non-physiologiques de canaux sodiques dépendants du voltage Nav1.4 et Nav1.5Gosselin-Badaroudine, Pascal 18 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Les canaux sodiques permettent la génération de potentiels d'action. Ceux-ci sont nécessaires à l'excitabilité cellulaire. Ainsi, les canaux sodiques permettent la génération et la propagation de l'influx nerveux. Ils permettent aussi la contraction des muscles squelettiques et du muscle cardiaque. Un dysfonctionnement dans ces canaux peut être à l'origine d'un vaste spectre de phénotypes pathologiques neuronaux tels que l'épilepsie, la douleur chronique, l'incapacité à ressentir la douleur, neuromusculaires tel la paramyotonie congénitale ou cardiaques tels certaines arythmies cardiaques ou la cardiomyopathie dilatée. L'étude des altérations des propriétés biophysiques des canaux sodiques permet de fournir un point de départ dans l'étude des mécanismes menant aux phénotypes pathologiques en plus d'orienter les traitements. Les travaux présentés dans ce mémoire portent sur une mutation permettant la création d'un pore alternatif dans le canal sodique. Nous avons caractérisé les propriétés du pore et les régions de la protéine où il est possible de créer un tel pore.
|
3 |
Microfluidics to study bioelectrochemical systems containing Geobacter sulfurreducens : from bio-kinetics to microbial fuel cellsKhodaparastasgarabad, Nastaran 23 September 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2024 / Les systèmes bioénergétiques émergents offrent des voies innovantes pour passer des produits pétroliers à des alternatives plus durables. La branche de la bioélectrochimie axée sur l'énergie a un potentiel significatif pour influencer les secteurs de l'énergie verte et de la bioénergie. Les systèmes bioélectrochimiques (BES), utilisant des composants biologiques tels que les bactéries comme biocatalyseurs, sont en cours de développement et de miniaturisation pour de nouvelles biotechnologies. Le domaine des BES évolue rapidement avec de nouvelles applications, architectures de dispositifs et méthodologies de recherche. Cette thèse présente une enquête approfondie sur les propriétés hydrodynamiques et cinétiques des BES, en se concentrant particulièrement sur les performances et le comportement des biofilms électroactifs (EAB) sous différents débits et concentrations de nutriments. Des BES microfluidiques avancés ont été utilisés pour isoler et identifier les limitations cinétiques à différents stades de croissance des biofilms, fournissant une analyse approfondie de la cinétique des enzymes dans des conditions de flux. En outre, la thèse discute du développement et de l'optimisation des piles à combustible microbiennes sans membrane microfluidique (MFC), qui ont atteint des densités de puissance record. Cette étude améliore la compréhension de l'interaction entre l'hydrodynamique, la croissance des biofilms et la cinétique électrochimique, ouvrant la voie à de futures avancées dans la conception et l'application des technologies BES. / Emerging bioenergy systems offer innovative pathways to transition from petroleum products to more sustainable alternatives. The energy-focused branch of bioelectrochemistry holds significant potential to influence green energy and bioenergy sectors. Bioelectrochemical systems (BES), utilizing biological components such as bacteria as biocatalysts, are being developed and miniaturized for new biotechnologies. The BES field is rapidly evolving with new applications, device architectures, and research methodologies. This thesis presents a comprehensive investigation into the hydrodynamic and kinetic properties of BES, with a particular focus on the performance and behavior of electroactive biofilms (EABs) under varying flow rates and nutrient concentrations. Advanced microfluidic BES were employed to isolate and identify kinetic limitations at different stages of biofilm growth, providing an in-depth analysis of enzyme kinetics under flow conditions. Additionally, the thesis discusses the development and optimization of microfluidic membraneless microbial fuel cells (MFCs), which achieved record power densities. This study enhances the understanding of the interplay between hydrodynamics, biofilm growth, and electrochemical kinetics, paving the way for future advancements in the design and application of BES technologies.
|
4 |
Dérivation des électrons photosynthétiques par des médiateurs de type quinone. / Photosynthetic electrons derivation by quinone type exogenous mediatorLongatte, Guillaume 23 September 2015 (has links)
La photosynthèse consiste en la conversion photo-induite du dioxyde de carbone et de l'eau en matière organique et en dioxygène. Utilisée par les algues, les plantes ou certaines bactéries, la photosynthèse est pourtant intrinsèquement bridée puisque seulement 4 % de l'énergie lumineuse sont convertis en énergie chimique. Sous forte irradiation, ceci peut engendrer une dénaturation de l'appareil photosynthétique. Par ailleurs, dans le contexte environnemental actuel, cette limitation représente également une opportunité d'utiliser l'énergie non convertie sous forme d'énergie électrique. Le travail présenté dans ce manuscrit a donc pour but de créer une voie secondaire d'écoulement des électrons photosynthétiques excédentaires afin de réduire l'endommagement du système sous forte irradiation et de les transcrire sous la forme d'un photo-courant. C'est pourquoi un système impliquant une électrode collectrice de carbone et des médiateurs redox de type quinone a été envisagé. La capacité acceptrice de certaines quinones, connues pour être de bons accepteurs du Photosystème II, a été évaluée au moyen d'études de fluorescence. La facilité de restitution des électrons dérivés par les quinones réduites a été quant à elle étudiée par électrochimie. Au bilan, les meilleures quinones (DCBQ, PPBQ) permettent d'obtenir des photo-courants de l'ordre de quelques µA.cm-2. La corrélation entre données expérimentales et théorie a également permis de mieux cerner le mécanisme de dérivation des électrons photosynthétiques par les quinones exogènes mais aussi de mettre en évidence des effets d'empoisonnement et/ou de perte d'accepteur dans les membranes. / Photosynthesis can be views as the conversion of carbon dioxide and water into organic matter and dioxygen. Used by algae, plants or some bacteria, photosynthesis efficiency is limited because only 4% of light energy is converted into chemical energy. Under high light conditions, this can induce serious damages of the photosynthetic machinery. Besides, if considering the current environmental context, this limitation is an opportunity to use the part of not converted energy to generate some useable electricity. The aim of the work developed in this manuscript is thus to create an additional pathway for derivating the photosynthetic electrons flow. In this way, the system damages are expected to be reduced under hight light conditions as well as some photocurrent to be generated. This is why an experimental set-up involving carbon working electrode and some quinone type redox mediators has been developed. The quinone ability to accept some electrons from Photosystem II has been studied by the mean of fluorescence techniques. Their ability to be re-oxidised at the carbon electrode surface has been investigated by cyclic voltametry. As a conclusion, the best quinones (selected after the fluorescence investigations) are DCBQ and PPBQ and correspond to photocurrent values about several µA.cm-2. A correlation between experimental data and theoretical predictions helped us to best understand the photosynthetic electrons derivation pathway and to evidence concomitant phenomenon like poisoning and quinone partition effects.
|
5 |
Development of a robust microfluidic electrochimical cell for biofilm study in controlled hydrodynamic conditionsZarabadi, Mirpouyan 02 August 2019 (has links)
Le domaine de la bioélectrochimie a actuellement un grand impact sur les nouvelles biotechnologies, notamment les dispositifs médicaux aux points de service et la détection bioélectrochimique. D'autre part, les systèmes émergents de bioénergie offrent de nouvelles opportunités pour se passer des produits pétroliers classiques grâce à des approches alternatives plus durables sur le plan environnemental. En tant que telle, la branche de la bioélectrochimie traitant des systèmes énergétiques est sur le point d’avoir un impact incontestable sur les concepts d’énergie verte et de bioénergie. Pour faciliter ces études et d'autres, les systèmes bioélectrochimiques (BES), qui utilisent des composants biologiques tels que des bactéries (souvent appelées biocatalyseurs), sont de plus en plus développés et miniaturisés pour une nouvelle série de biotechnologies. Cette thèse porte sur la fabrication et la fonctionnalité d’un « système microfluidique électrochimique à trois électrodes » pour l’étude de biofilms de différentes bactéries (électroactives et non-électroactives) à l’aide de différentes techniques électrochimiques. Ces biofilms ont été largement étudiés par des techniques électrochimiques et d’imagerie microscopique (microscopie optique et électronique). Cette thèse pourra potentiellement ouvrir la voie à une nouvelle vague de développements de biocapteurs électrochimiques, tout en offrant des avancées scientifiques spécifiques dans les études de biocapacité de biofilm, de biorésistance, de pH du biofilm, de dépendance nutritionnelle de l'activité du biofilm et de la cinétique de respiration bactérienne. / The area of bioelectrochemistry is currently making the greatest impact in new biotechnology, including point of care medical devices and bioelectrochemical sensing. On the other hand, emerging bioenergy systems offer new opportunities to move away from conventional petroleum products toward more environmentally sustainable alternative approaches. As such, the branch of bioelectrochemistry dealing with energy systems is poised to have an undoubtable impact on greenenergy and bioenergy concepts. To facilitate these and other areas of study, bioelectrochemical systems (BESs), which use biological components such as bacteria (often referred to as biocatalysts) are increasingly being developed and miniaturized for a new round of biotechnology. This PhD thesis focuses on fabrication and functionality of a “three-electrode electrochemical microfluidic system” for biofilm studies of different bacteria (electroactive and non-electroactive) using different electrochemical techniques. They were broadly studied by electrochemical and microscopic imaging (optical and electron microscopy) techniques. This thesis can potentially open the way for a new wave of electrochemical biosensor development, while offering specific scientific advances in studies of biofilm biocapacitance, bioresistance, biofilm pH, nutrient dependency of biofilm activity and bacterial respiration kinetics.
|
6 |
Électrodes enzymatiques à base d'hydrogels rédox en vue de l'oxydation du glucosePrévoteau, Antonin 16 December 2010 (has links) (PDF)
la possibilité de convertir l'activité catalytique d'une oxydoréductase en un courant électrique a permis le développement d'une grande diversité d'électrodes enzymatiques. Les anodes catalysant l'oxydation du glucose font partie des plus étudiées pour leurs applications dans la mesure de la glycémie ou dans des biopiles glucose/O2. Parmi les nombreuses stratégies disponibles, l'utilisation d'hydrogels à base de complexes d'osmium en guise de médiateurs rédox fournit d'excellents résultats, qui restent cependant limités en terme de densité de courant ou de sélectivité. Durant cette thèse, la glucose oxydase (GOx) a été déglycosylée. Les électrodes préparées avec la nouvelle enzyme délivraient des courants catalytiques plus élevés, ce qui laissait supposer initialement une diminution de la distance de saut d'électron entre la GOx et le médiateur rédox suite au retrait des oligosaccharides. Une étude avec des électrodes de différentes compositions suggère au contraire que la déglycosylation n'améliore pas le transfert électronique intrinsèque mais la structure globale de l'hydrogel. De fait, une enzyme plus petite et plus négativement chargée doit induire un volume d'hydrogel plus faible pour une même composition molaire. En second lieu, une réduction parasite de l'oxygène affectant ces anodes, non envisagée jusqu'à aujourd'hui, a été mise en évidence et étudiée. En effet, l'interférence de l'O2 n'est usuellement attribuée qu'à sa réactivité avec la GOx. La présente étude prouve que l'O2 se réduit aussi sur les complexes d'osmium si leur potentiel standard E°' est inférieur à + 0,07 V vs. Ag/AgCl. La cinétique de cette réaction croît exponentiellement quand le E°' du complexe diminue. En plus d'abaisser le courant d'oxydation et donc les performances de l'anode, la génération de peroxyde d'hydrogène pourrait aussi altérer sa stabilité. Ces résultats suggèrent que le choix d'un médiateur de E°' donné doit aussi dépendre de l'amplitude de cette réduction.
|
7 |
Électrodes enzymatiques à base d’hydrogels rédox en vue de l’oxydation du glucose : effet de la déglycosylation de la glucose oxydase et mise en évidence d’une réduction parasite de l’oxygène sur le médiateur rédox / Enzyme electrodes based on redox hydrogels for glucose oxidation : effect of glucose oxidase deglycosylation and evidence for oxygen side reduction on the redox mediatorPrévoteau, Antonin 16 December 2010 (has links)
La possibilité de convertir l’activité catalytique d’une oxydoréductase en un courant électrique a permis le développement d’une grande diversité d’électrodes enzymatiques. Les anodes catalysant l’oxydation du glucose font partie des plus étudiées pour leurs applications dans la mesure de la glycémie ou dans des biopiles glucose/O2. Parmi les nombreuses stratégies disponibles, l’utilisation d’hydrogels à base de complexes d’osmium en guise de médiateurs rédox fournit d’excellents résultats, qui restent cependant limités en terme de densité de courant ou de sélectivité. Durant cette thèse, la glucose oxydase (GOx) a été déglycosylée. Les électrodes préparées avec la nouvelle enzyme délivraient des courants catalytiques plus élevés, ce qui laissait supposer initialement une diminution de la distance de saut d’électron entre la GOx et le médiateur rédox suite au retrait des oligosaccharides. Une étude avec des électrodes de différentes compositions suggère au contraire que la déglycosylation n’améliore pas le transfert électronique intrinsèque mais la structure globale de l’hydrogel. De fait, une enzyme plus petite et plus négativement chargée doit induire un volume d’hydrogel plus faible pour une même composition molaire. En second lieu, une réduction parasite de l’oxygène affectant ces anodes, non envisagée jusqu’à aujourd’hui, a été mise en évidence et étudiée. En effet, l’interférence de l’O2 n’est usuellement attribuée qu’à sa réactivité avec la GOx. La présente étude prouve que l’O2 se réduit aussi sur les complexes d’osmium si leur potentiel standard E°’ est inférieur à + 0,07 V vs. Ag/AgCl. La cinétique de cette réaction croît exponentiellement quand le E°’ du complexe diminue. En plus d’abaisser le courant d’oxydation et donc les performances de l’anode, la génération de peroxyde d’hydrogène pourrait aussi altérer sa stabilité. Ces résultats suggèrent que le choix d’un médiateur de E°’ donné doit aussi dépendre de l’amplitude de cette réduction. / The possibility of converting the catalytic activity of oxidoreductase enzymes into electric current has led to the development of a high diversity of enzyme electrodes. Anodes catalysing glucose oxidation have been amongst the most studied, especially for their application in monitoring blood glucose or glucose/O2 biofuel cells. Although one of the numerous strategies available, the use of osmium-based hydrogels as redox mediators, has given excellent results, some limitations still remain such as rather low current densities, stability or selectivity Initially, the study focused on the deglycosylation of glucose oxidase (GOx). When most of the oligosaccharides around this glycoenzyme were removed, the ensuing increase in the electrode catalytic current seemed a priori to support the hypothesis of a decrease in the electron hopping distance between the enzyme redox centres and the redox mediator. However, a systematic study of electrode response for different compositions leads us to conclude that deglycosylation does not improve the intrinsic electron transfer but the whole hydrogel structure. This seems due to the smaller size and higher surface charge of the deglycosylated GOx inducing smaller hydrogel volumes than in the native-based GOx. The study then proceeded to examine the oxygen side reduction of commonly used osmium-based redox polymers. The interference of O2 on glucose oxidation current has generally been attributed to O2 reactivity with GOx. The present study shows that O2 reduction also occurs on osmium-based polymers if their formal potential E°’ is below + 0.07 V vs. Ag/AgCl. The kinetics of this reaction appears to increase exponentially when E°’ decreases. As well as reducing the oxidation current and, consequently, lowering anode performances, the generation of hydrogen peroxide could also modify electrode stability. These results suggest that the choice of redox mediator for a given E°'must also take into account the extent of O2 reduction.
|
8 |
Etude de l'immobilisation et de la détection de la reconnaissance moléculaire d'acides nucléiques sur électrodes d'or / Study of the immobilization and the detection of the molecular recognition of nucleic acids on gold electrodesSteichen, Marc 06 March 2008 (has links)
Ce travail s’inscrit dans le cadre de la recherche relative au développement de biosenseurs à ADN électrochimiques. Des aspects fondamentaux, ainsi que des aspects d’application de la détection d’hybridation d’ADN sont envisagés.<p>Dans un premier temps, le comportement interfacial et le processus d’hybridation d’oligonucléotides d’ADN linéaires et ADN hairpin (structure en épingle à cheveux) nonmarqués sont étudiés en formant des monocouches auto-assemblées mixtes de monobrins d’ADN (ssADN) thiolés et d’un hydroxyalcanethiol (4-mercaptobutan-1-ol) par coadsorption spontanée sur des électrodes d’or polycristallin. L’immobilisation de monocouches mixtes ssADN/MCB est caractérisée par voie électrochimique et par spectroscopie des photoélectrons X. Des mesures de chronocoulométrie, en présence de [Ru(NH3)6]3+ (RuHex), permettent de déterminer la quantité d’ADN dans la monocouche mixte formée. Les résultats montrent que l’excès superficiel d’ADN linéaire est plus important que l’excès superficiel d’ADN hairpin sous des conditions de formation identiques.<p>La réaction de reconnaissance moléculaire d’hybridation est détectée par des mesures d’impédance en présence de [Fe(CN)6]3-/4-. L’hybridation se traduit dans le cas de l’ADN linéaire par une augmentation de la résistance au transfert d’électron Rct tandis que dans le cas de l’ADN hairpin, Rct diminue. Ces différences sont dues au plus faible recouvrement et au changement de conformation des molécules d’ADN hairpin lors de l’hybridation. Des mesures de réflectivité de neutrons nous ont permis de mettre en évidence l’augmentation de l’épaisseur du film d’ADN hairpin et de confirmer le changement conformationel ces sondes lors de la reconnaissance moléculaire.<p>Dans la seconde partie, nous présentons une nouvelle méthode électrochimique de détection d’hybridation, basée sur les interactions électrostatiques entre le complexe cationique RuHex et les groupements phosphates de l’ADN. Afin d’améliorer la détection des molécules de PNA (peptide nucleic acid) ont été immobilisées comme sondes de reconnaissance moléculaire. Après hybridation des sondes PNA avec le brin complémentaire, RuHex s’adsorbe sur l’ADN hybridé et un signal de réduction de ces complexes redox, enregistré par voltampérométrie alternative, constitue une signature claire de l’hybridation d’ADN à l’interface modifiée. Les interactions RuHex/PNA-ADN ont été étudiées. La constante d’adsorption de RuHex sur l’électrode modifiée PNA/MCB après hybridation est évaluée à 2,9 (±0,3) 105 M-1 en milieu Tris-HCl 0,01M, selon une isotherme de Langmuir.<p>Les performances analytiques de la méthode de détection (sensibilité, sélectivité et reproductibilité) ont été évaluées et optimisées pour la détection des séquences d’ADN du gène de l’ARNr 23S d’Helicobacter pylori. La méthode de détection électrochimique présentée est assez sélective pour permettre de discriminer les mutations ponctuelles A2143G et A2144C de la séquence de type sauvage. La diminution significative des signaux d’admittance enregistrés en présence des séquences mutées est attribuée à la capacité accrue de discrimination de mutations ponctuelles des molécules PNA.<p>La réponse de détection est linéaire en fonction du logarithme de la concentration de la cible d’ADN sur plus de quatre ordres de grandeur (10-6 M à 10-10 M). La limite de détection de l’oligonucléotide d’ADN complémentaire de 80 pM est très bonne. La méthode a été appliquée avec succès à la détection de fragments PCR complémentaires de 100 et 400 paires de bases, amplifiés à partir de souches SS1 d’H.pylori. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
9 |
Ingénierie électrochimique pour déchiffrer les mécanismes de formation des biofilms électroactifs / Electrochemical engineering for deciphering the mechanisms of electroactive biofilm formationChong, Poehere 23 November 2018 (has links)
Les biofilms électroactifs (EA) sont des consortia de bactéries mono- ou multi-espèces qui ont la capacité de catalyser des réactions électrochimiques en échangeant des électrons avec les électrodes sur lesquelles ils se développent. Les biofilms EA ont ouvert la voie à de nombreux procédés électrochimiques innovants, l’exemple le plus connu étant la pile à combustible microbienne. Dans ce cadre, des électrodes tridimensionnelles poreuses sont couramment mises en oeuvre afin d’offrir aux biofilms EA une surface maximale pour se développer. Toutefois, à ce jour les études théoriques qui permettraient de guider l’élaboration de ces électrodes restent très peu nombreuses. Une synthèse bibliographique a mis en évidence l’importance cruciale de la taille des pores et a montré que des pores de l’ordre du millimètre conduisent aux densités de courant les plus élevées. La première partie de la thèse a donc été consacrée à caractérise l’impact de la taille des pores, entre 1 à 5 mm, sur le développement et les performances électrochimiques d’un biofilm EA multiespèces. Ces tailles permettent la colonisation microbienne sur plusieurs centimètres de profondeur et favorisent la stabilité du courant à long terme. Par contre, l’effet limitant des transferts de matière est significatif, particulièrement pour ce qui concerne les espèces tampon. Enfin, un découplage est mis en évidence entre la colonisation qui se déploie sur plusieurs semaines et l’établissement du courant qui se réalise en quelques jours seulement. Un second dispositif expérimental a mis en évidence une sélection des populations microbiennes en fonction des longueurs de pore de 5 à 24 mm. La deuxième partie de la thèse se focalise sur l’étude des premiers instants de formation du biofilm électroactif à la surface d’une électrode. Une tentative d’identification des mécanismes impliqués dans le mouvement des bactéries électroactives vers l’électrode est proposée. / Electroactive (EA) biofilms refer to single- or multi-species bacterial consortia, which have theability to catalyse electrochemical reactions by exchanging electrons with the electrodes on whichthey develop. EA biofilms have paved the way for many innovative electrochemical processes, themost well-known example is microbial fuel cell. In this context, 3-dimensional porous electrodesare commonly used to offer EA biofilms a maximum surface area for development. However, todate, very few theoretical studies have been carried out to guide the development of theseelectrodes. A bibliographic synthesis highlighted the importance of the pore size and indicated thatpore sizes of the order of a few millimetres lead to the highest current densities. The first part ofthe thesis was therefore devoted to characterizing the impact of size, between 1 and 5 mm, on thedevelopment and electrochemical performance of a multi-species EA biofilm. These sizes allowmicrobial colonization several centimetres deep and promote long-term current stability. However,limiting effect of the mass transfer is significant, particularly for the buffer species. Finally, adecoupling is highlighted between the colonisation, which takes place over several weeks, and theestablishment of the current which takes a few days only. A second experimental set up showsthat a selection occurs on the microbial populations in function of pore lengths from 5 to 24 mm.The second part of the thesis focuses on the study of the early stages of the EA biofilm formation at the electrode surface. In particular, an attempt to identify the mechanisms involved in the electroactive bacteria movement towards the electrode is proposed.
|
Page generated in 0.0624 seconds