• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 11
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of T Cell Chemotaxis and Electrotaxis Using Microfluidic Devices

Li, Jing January 2012 (has links)
Directed immune cell migration plays important roles in immunosurveillance and immune responses. Understanding the mechanisms of immune cell migration is important for the biology of immune cells with high relevance to immune cell trafficking mediated physiological processes and diseases. Immune cell migration can be directed by various guiding cues such as chemical concentration gradients (a process termed chemotaxis) and direct current electric fields (dcEF)(a process termed electrotaxis). Microfluidic devices that consist of small channels with micrometer dimensions have been increasingly developed for cell migration studies. These devices can precisely configure and flexibly manipulate chemical concentration gradients and electric fields, and thus provide powerful quantitative test beds for studying the complex guiding mechanisms for cell migration. In the research of this thesis, a PDMS-based and a glass-based microfluidic devices were developed for producing controlled dcEF and these devices were used to analyze electrotaxis of activated human blood T cells. Using both devices, we have successfully demonstrated that activated human blood T cells migrate toward the cathode of the applied dcEF. Furthermore, a novel microfluidic device was developed to configure better controlled single or co-existing chemical gradients and dcEF to mimic the complex guiding environments in tissues and this device was used to investigate the competition of chemical gradients and dcEF in directing activated human blood T cell migration.
2

Investigation of T Cell Chemotaxis and Electrotaxis Using Microfluidic Devices

Li, Jing January 2012 (has links)
Directed immune cell migration plays important roles in immunosurveillance and immune responses. Understanding the mechanisms of immune cell migration is important for the biology of immune cells with high relevance to immune cell trafficking mediated physiological processes and diseases. Immune cell migration can be directed by various guiding cues such as chemical concentration gradients (a process termed chemotaxis) and direct current electric fields (dcEF)(a process termed electrotaxis). Microfluidic devices that consist of small channels with micrometer dimensions have been increasingly developed for cell migration studies. These devices can precisely configure and flexibly manipulate chemical concentration gradients and electric fields, and thus provide powerful quantitative test beds for studying the complex guiding mechanisms for cell migration. In the research of this thesis, a PDMS-based and a glass-based microfluidic devices were developed for producing controlled dcEF and these devices were used to analyze electrotaxis of activated human blood T cells. Using both devices, we have successfully demonstrated that activated human blood T cells migrate toward the cathode of the applied dcEF. Furthermore, a novel microfluidic device was developed to configure better controlled single or co-existing chemical gradients and dcEF to mimic the complex guiding environments in tissues and this device was used to investigate the competition of chemical gradients and dcEF in directing activated human blood T cell migration.
3

Dopamine mediated modulation of electrotactic swimming behaviour in Caenorhabditis elegans

Salam, Sangeena Devi January 2016 (has links)
The nematode C. elegans is a multicellular model organism to study the neuronal-basis of behaviour. C. elegans demonstrates an innate response to swim towards the cathode in the presence of a DC electric field(EF), a behaviour known as “electrotaxis”. We examined mutants affecting sensory and dopaminergic neurons and found that these mutants moved with reduced speed with intermittent pauses, abnormal turning, and slower body bend. A similar phenotype was observed in worms treated with neurotoxins 6-OHDA, MPTP and rotenone. Pre-exposing worms to a known neuroprotective compound acetaminophen could suppress the effects of neurotoxin on movement. Further, this study demonstrates that dopamine and the D2-type dopamine receptor are necessary to modulate electrotactic movements in worms. A reduction in extracellular dopamine leads to a significant increase in the swimming speed as judged by the analysis of bas-1(dopa decarboxylase) and cat-1(VMAT) mutants. The dopamine transporter dat-1 acts genetically downstream of bas-1 and cat-1 since dat-1 mutants efficiently suppress bas-1 and cat-1 phenotypes. We also found that DOP-3(D2-type receptor) acts as the sole receptor for dopamine-mediated regulation of electrotaxis. Interestingly, we found that prolonged exposure to EF resulted in a gradual decline in the swimming speed such that animals were 40% slower at the end of ten minutes exercise period. This change is mediated by DOP-3 since dop-3 mutants continue to swim at the initial speed and don’t slow down. This conclusion is supported by the analysis of animals treated with Heloperidol(D2 antagonist) and SKF38393(D1 agonist). Overall, our work demonstrates that D2 receptor-mediated neuronal signalling is required to restrict muscle activity not only during the initial phase of electrotaxis swimming but also for the entire duration of the assay. We suggest that such a role of dopamine signalling might serve as an important and conserved mechanism to limit muscle overuse during prolonged physical exercise. / Thesis / Doctor of Science (PhD)
4

Effects of Electromagnetic Fields on Cells: Physiological and Therapeutical Approaches and Molecular Mechanisms of Interaction

Funk, Richard H. W., Monsees, Thomas K. 04 March 2014 (has links) (PDF)
This review concentrates on findings described in the recent literature on the response of cells and tissues to electromagnetic fields (EMF). Models of the causal interaction between different forms of EMF and ions or biomolecules of the cell will be presented together with our own results in cell surface recognition. Naturally occurring electric fields are not only important for cell-surface interactions but are also pivotal for the normal development of the organism and its physiological functions. A further goal of this review is to bridge the gap between recent cell biological studies (which, indeed, show new data of EMF actions) and aspects of EMF-based therapy, e.g., in wounds and bone fractures. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
5

On the Interactions of Electromagnetic Fields with Human Cells

Jones, Travis Hamilton 07 October 2020 (has links)
No description available.
6

CHEMICAL AND GENETIC SCREENING APPLICATIONS OF A MICROFLUIDIC ELECTROTAXIS ASSAY USING NEMATODE CAENORHABDITIS ELEGANS / SCREENING APPLICATIONS OF NEMATODE MICROFLUIDIC ELECTROTAXIS

Tong, Justin 11 1900 (has links)
Combining the nematode Caenorhabditis elegans with novel microfluidic technology has produced a phenotypic movement assay that is at once rapid, sensitive, and low-cost. The method is based on the neurophysiologic phenomenon of worms exhibiting robust, continuous, directed locomotion in response to mild electric fields inside a microchannel. As we demonstrate with the studies reported herein, our microfluidic electrotaxis platform is a unique tool for studying the effects of environmental and genetic manipulations on C. elegans’ movement behaviour, which in turn indicates the state of the organism’s neuronal and muscular systems. In one initiative to develop an inexpensive biosensor, we use the setup to measure the response of worms to common environmental pollutants. Results indicate that worms’ electrotactic swimming behaviour is particularly susceptible to metal salts. A comparison with traditional assays measuring fecundity, growth, and lifespan reveals that electrotactic speed shows a comparable level of sensitivity as a toxicity endpoint. Another study demonstrates that worms expressing a mutant form of α-synuclein, a familial Parkinson’s disease-related protein, show deficits in electrotactic swimming speed that coincide with dopaminergic neuron damage. We further show that both the electrotaxis and neuronal phenotypes can be ameliorated by treatment with curcumin, a putative neuroprotective agent. We have also used the platform to investigate the effects of other environmental and genetic stresses on electrotactic behaviour. Our findings indicate that the response can withstand many different insults but is affected by stresses that induce the mitochondrial and ER unfolded protein responses, which themselves play roles in preserving electrotactic swimming behaviour alongside the heat shock response. These data expand our knowledge of how the motor output component of C. elegans’ electrotactic response is perturbed by environmental and genetic manipulations, and also support the utility of microfluidic electrotaxis as a functional output of nematode locomotory circuits in a multitude of contexts. / Thesis / Doctor of Science (PhD)
7

Automated Nematode Tracking System

Scigajlo, Alexander January 2016 (has links)
Many diseases, such as Parkinson's disease and heavy metal poisoning, are associated with impaired or aberrant locomotion. Because the underlying mechanisms are difficult to study in humans, simpler metazoans like Caenorhabditis elegans are commonly employed to model these diseases. C. elegans is especially useful in this respect because its innate electrotactic behaviour allows instantaneous manipulation of its locomotion using mild electric fields in a microfluidic environment, the results of which can be captured on video. However, extraction of locomotory data from these videos is a major bottleneck to the throughput of the microfluidic electrotaxis platform. In the present study, we describe the development of novel software to analyze electrotaxis videos in an automated fashion. The software, dubbed the Automated Nematode Tracking System (ANTS), uses efficient, parameterless computer vision techniques to simultaneously track and assess movement characteristics of ambulating animals. In combination with the previously described microfluidic electrotaxis platform, ANTS promises to accelerate research with C. elegans models of locomotory dysfunction. / Thesis / Master of Applied Science (MASc)
8

Effects of Electromagnetic Fields on Cells: Physiological and Therapeutical Approaches and Molecular Mechanisms of Interaction

Funk, Richard H. W., Monsees, Thomas K. January 2006 (has links)
This review concentrates on findings described in the recent literature on the response of cells and tissues to electromagnetic fields (EMF). Models of the causal interaction between different forms of EMF and ions or biomolecules of the cell will be presented together with our own results in cell surface recognition. Naturally occurring electric fields are not only important for cell-surface interactions but are also pivotal for the normal development of the organism and its physiological functions. A further goal of this review is to bridge the gap between recent cell biological studies (which, indeed, show new data of EMF actions) and aspects of EMF-based therapy, e.g., in wounds and bone fractures. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
9

Ingénierie électrochimique pour déchiffrer les mécanismes de formation des biofilms électroactifs / Electrochemical engineering for deciphering the mechanisms of electroactive biofilm formation

Chong, Poehere 23 November 2018 (has links)
Les biofilms électroactifs (EA) sont des consortia de bactéries mono- ou multi-espèces qui ont la capacité de catalyser des réactions électrochimiques en échangeant des électrons avec les électrodes sur lesquelles ils se développent. Les biofilms EA ont ouvert la voie à de nombreux procédés électrochimiques innovants, l’exemple le plus connu étant la pile à combustible microbienne. Dans ce cadre, des électrodes tridimensionnelles poreuses sont couramment mises en oeuvre afin d’offrir aux biofilms EA une surface maximale pour se développer. Toutefois, à ce jour les études théoriques qui permettraient de guider l’élaboration de ces électrodes restent très peu nombreuses. Une synthèse bibliographique a mis en évidence l’importance cruciale de la taille des pores et a montré que des pores de l’ordre du millimètre conduisent aux densités de courant les plus élevées. La première partie de la thèse a donc été consacrée à caractérise l’impact de la taille des pores, entre 1 à 5 mm, sur le développement et les performances électrochimiques d’un biofilm EA multiespèces. Ces tailles permettent la colonisation microbienne sur plusieurs centimètres de profondeur et favorisent la stabilité du courant à long terme. Par contre, l’effet limitant des transferts de matière est significatif, particulièrement pour ce qui concerne les espèces tampon. Enfin, un découplage est mis en évidence entre la colonisation qui se déploie sur plusieurs semaines et l’établissement du courant qui se réalise en quelques jours seulement. Un second dispositif expérimental a mis en évidence une sélection des populations microbiennes en fonction des longueurs de pore de 5 à 24 mm. La deuxième partie de la thèse se focalise sur l’étude des premiers instants de formation du biofilm électroactif à la surface d’une électrode. Une tentative d’identification des mécanismes impliqués dans le mouvement des bactéries électroactives vers l’électrode est proposée. / Electroactive (EA) biofilms refer to single- or multi-species bacterial consortia, which have theability to catalyse electrochemical reactions by exchanging electrons with the electrodes on whichthey develop. EA biofilms have paved the way for many innovative electrochemical processes, themost well-known example is microbial fuel cell. In this context, 3-dimensional porous electrodesare commonly used to offer EA biofilms a maximum surface area for development. However, todate, very few theoretical studies have been carried out to guide the development of theseelectrodes. A bibliographic synthesis highlighted the importance of the pore size and indicated thatpore sizes of the order of a few millimetres lead to the highest current densities. The first part ofthe thesis was therefore devoted to characterizing the impact of size, between 1 and 5 mm, on thedevelopment and electrochemical performance of a multi-species EA biofilm. These sizes allowmicrobial colonization several centimetres deep and promote long-term current stability. However,limiting effect of the mass transfer is significant, particularly for the buffer species. Finally, adecoupling is highlighted between the colonisation, which takes place over several weeks, and theestablishment of the current which takes a few days only. A second experimental set up showsthat a selection occurs on the microbial populations in function of pore lengths from 5 to 24 mm.The second part of the thesis focuses on the study of the early stages of the EA biofilm formation at the electrode surface. In particular, an attempt to identify the mechanisms involved in the electroactive bacteria movement towards the electrode is proposed.
10

Effects of Induced Electric Fields on Tissues and Cells

Sequin, Emily Katherine 03 October 2014 (has links)
No description available.

Page generated in 0.0612 seconds