• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 8
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comprendre et optimiser les anodes microbiennes grâce aux technologies microsystèmes

Champigneux, Pierre 15 June 2018 (has links) (PDF)
De multiples micro-organismes ont la capacité de catalyser l’oxydation électrochimique de matières organiques en s’organisant en biofilm à la surface d’anodes. Ce processus est à la base de procédés électro-microbiens très innovants tels que les piles à combustible microbiennes ou les électrolyseurs microbiens. L’interface biofilm/électrode a été l’objet de nombreuses étudesdont les conclusions restent difficiles à démêler en partie du fait de la diversité des paramètres interfaciaux mis en jeu. L’objet de ce travail de thèse est d’exploiter les technologies microsystèmes pour focaliser l’impact de la topographie de surface des électrodes sur le développement du biofilm et sur ses performances électro-catalytiques. La formation de biofilmsélectroactifs de Geobacter sulfurreducens a été étudiée sur des électrodes d’or présentant des topographies bien contrôlées, sous la forme de rugosité, porosité, réseau de piliers, à des échellesallant du nanomètre à quelques centaines de micromètres. La présence de microrugosité a permis d’accroitre les densités de courant d’un facteur 8 par rapport à une surface lisse et son effet a étéquantifié à l’aide du paramètre Sa. Nous avons tenté de distinguer les effets des différentes échelles de rugosité sur le développement du biofilm et la vitesse des transferts électroniques.L’intérêt de la microporosité a été discuté. L’accroissement de surface active par la présence de micro-piliers s’est avéré très efficace et une approche théorique a donné des clés de compréhension et d’optimisation. Les connaissances acquises dans les conditions de culture pure ont finalement été confrontées avec la mise en oeuvre de biofilms multi-espèces issus d’un inoculum complexe provenant de sédiments marins.
2

MICROBIAL ELECTROCHEMISTRY APPLICATIONS FOR NUTRIENT RECOVERY AND ORGANIC DETECTION IN WASTEWATER TREATMENT

Yuan, Pengyi January 2017 (has links)
This thesis presents research work on microbial electrochemistry applications for phosphorus recovery from real wastewater and bioanode sensor development. Phosphorus is a valuable but limited resource which is essential for land fertilizers. Recovering phosphorus using microbial electrolysis cells has been emphasized in wastewater treatment research. Stainless steel mesh (SSM) cathode MECs used in this study showed insufficient phosphorus recovery (68%) because struvite crystals were smaller than the open space between mesh wires (80 µm). Besides, lack of readily biodegradable substrates in the dewatering centrate resulted in limited electric current generation (< 0.2 A/m2) and local pH condition near the cathode. Thus, the following experiments were conducted with stainless steel foil (SSF) cathodes and acetate addition to improve recovery efficiency. Under high electric current density (> 2 A/m2), a thick layer of struvite crystals was formed on the SSF cathode and the phosphorus recovery was increased to 96%. These findings prove that MECs can applied as efficient tools to recover nutrients from real wastewater. Bioanode sensors can be used for real-time and in-situ assessment of water quality. However, the sensor performances are often limited by the narrow detection range, long analysis time, and hysteresis. In order to overcome the challenges for practical applications, a new operation method consisting of three sequences (Normal Operation, Reset Step, and Test Step) was proposed and examined using MEC-based bioanode sensors. Reset Step can eliminate hysteresis effects and produce accurate linear correlations between the soluble COD (chemical oxygen demand) and electric current. The total analysis time was found to be 3 min or even less. The increased detection range (from 75 to 130 mg-COD/L) was achieved by applying a high applied voltage during Test Step. The demonstrated results indicate that MECs can be used for accurate estimation of biodegradable organics in natural or engineered water systems. / Thesis / Master of Applied Science (MASc)
3

Optimisation d'anodes microbiennes à partir de lixiviat de sol pour la conception de piles à combustible microbiennes / Optimisation of microbial anodes from soil leachate for designing microbial fuel cells

Pocaznoi, Diana 18 July 2012 (has links)
Les piles à combustible microbienne (PACMs) sont des piles capables de convertir l'énergie chimique de combustibles organiques directement en énergie électrique. Dans ces piles, l'oxydation du combustible est assurée par des micro-organismes dits "électro-actifs" qui forment des biofilms à la surface de l'anode et jouent le rôle de catalyseur des réactions électrochimiques. Les travaux qui font l'objet de ce manuscrit ont eu pour objectif d'optimiser des anodes microbiennes formées à partir de la flore bactérienne contenue dans des terreaux de jardin. Les expériences effectuées en chronoampérométrie avec un système à trois électrodes ont conduit à la première démonstration expérimentale que des densités de courant de 66 A/m2 pouvaient être obtenues en formant les anodes microbiennes sur des ultra-microélectrodes. Sur des électrodes de taille normale, la mise au point d'une nouvelle technique (polarisation retardée) pour la formation de biofilms microbiens a permis d'obtenir des densités de courant de 9,4 A/m2 après seulement 3 jours de polarisation tandis que le protocole conventionnel demandait quelques semaines pour obtenir 6 à 8 A/m2. L'étude de différents matériaux d'électrode a indiqué que l'acier inoxydable qui permit d'atteindre des densités de courant de 21 A/m2 présente un grand intérêt pour la formation de biofilms électro-actifs. En effet, les électrodes en tissu de carbone ont assuré jusqu'à 34,3 A/m2, voire 50 A/m2 en anaérobiose, mais elles bénéficiaient d'une structure tridimensionnelle. La mise en oeuvre des anodes microbiennes optimisées dans les PACMs a assuré la production de 6,0 W/m2. L'élaboration d'un nouveau prototype intégrant un système de cathode amovible a permis d'allonger la durée de vie initiale de la pile de 2 semaines à plus de 2 mois / Microbial fuel cells (MFC) are devices capable to convert chemical energy from organic fuels directly into electrical energy. In these cells, the fuel oxidation is provided by micro-organisms known as "electro-active"; these microorganism form biofilms on the surface of the anode and act as a catalyst for electrochemical reactions. The aim of this work was the optimisation of microbial anodes formed from bacterial flora contained in garden soils. The chronoamperometric experiments performed in a three-electrode system showed for the very first time in these systems that current densities of 66 A/m2 could be obtained by forming microbial anodes on ultra-microelectrodes. On electrode of normal size, the development of a new technique (delayed polarisation) for designing microbial biofilms produced current densities of 9.4 A/m2 after 3 days of polarisation, while the conventional protocol asked a few weeks for obtaining 6 to 8 A/m2. The study of different electrode materials indicated that stainless steel allowed reaching current densities up to 21 A/m2, which makes it a suitable candidate for designing electro-active biofilms. Indeed, the carbon electrodes provided up to 34.4 A/m2, even 50 A/m2 in anaerobic conditions, but the electrodes benefited of a three-dimensional structure contrasting the stainless steel electrode. The use of optimised microbial anodes in MFCs insured the production of 6 W/m2. In addition, the development of a new prototype containing a removable cathode allowed extending the lifetime of the initial MFC from 2 weeks to over 2 months
4

Production de biohydrogène par électro-catalyse microbienne / Biohydrogen production by microbial electro-catalysis

Rousseau, Raphaël 17 December 2013 (has links)
La cellule d’électrolyse microbienne (CEM) permet la conversion de la biomasse en dihydrogène via un apport théorique en énergie électrique 10 fois moindre que celui de l’électrolyse de l’eau. Un tel procédé fonctionne via la technologie des bioanodes, qui permet la catalyse de l’oxydation de la biomasse en CO2 par l’intermédiaire d’un biofilm électro-actif. Les travaux exposés dans ce manuscrit de thèse ont pour but l’optimisation des performances de la bioanode, la compréhension des mécanismes de catalyse et la réalisation d’un prototype à échelle laboratoire. L’optimisation par l’étude de paramètres opératoires en montage 3 électrodes a montré que l’utilisation de sédiments de salins comme source de micro-organismes avec électrode en feutre de carbone polarisée à + 0,1 V / ECS à une température de 40°C permet la formation de bioanodes capables de débiter jusqu’à 85 A.m-2 pour une conductivité de 10,4 S.m-1. A 30°C, le pyroséquençage ADN a mis en lumière l’émergence des genres bactériens Desulfuromonas et Marinobacter. La conception et l’exploitation d’un modèle de voltammétrie cyclique a montré que le transport des électrons au sein du biofilm était environ 100 fois plus lent que le métabolisme bactérien. L’utilisation de la spectroscopie d’impédance électrochimique montre que la résistance au transfert de charge à l’interface électrode/solution baisse de 24 kΩ.cm2 à 64 Ω.cm2 lors de la formation du biofilm. Un taux de production maximum de 2,85 LH2.L-1.j-1 ainsi qu’une durée de vie de plus de 50 jours du procédé ont été obtenus lors de la conduite d’un prototype laboratoire de CEM. / Microbial electrolysis cell (MEC) is a recent and promising bioelectrochemical process that converts biomass onto hydrogen thanks to an amount of electrical energy 10 times smaller than for water electrolysis. The operation of the process is making possible by the bioanode technology which catalyses the biomass combustion onto CO2 through an electro-active biofilm. The purpose of the present work consists on the optimisation of the bioanode, the understanding of the catalysis mechanism and a scaling-up by the designing of a MEC prototype. Using a three-electrode device and sediment of salt marshes as inoculum, the study of the experimental parameters demonstrated that carbon felt poised at + 0.1 V /ECS at 40°C led to the formation of bioanode able to generate up to 85 A.m-2 at a solution conductivity of 10,4 S.m-1. For a temperature of 30°C, DNA pyrosequencing denoted the presence of the two bacterial genera Desulfuromonas and Marinobacter. The development and the exploitation of a cyclic voltammetric model showed that electron transfer within the biofilm ran almost 100 times slower than bacterial metabolism. Electrochemical impedance spectroscopy during biofilm formation revealed a decreasing of the charge transfer resistance at the electrode/solution interface from 24 kΩ.cm2 to 64 Ω.cm2. Designing and first experiments with a 6L CEM prototype led to a hydrogen production rate of 2.85 LH2.L-1.j-1 and a process life time of up to 50 days. Those performances were achieved in a reproducible way.
5

Comprendre et optimiser les anodes microbiennes grâce aux technologies microsystèmes / Understanding and optimizing microbial anodes using microsystems technologies

Champigneux, Pierre 15 June 2018 (has links)
De multiples micro-organismes ont la capacité de catalyser l’oxydation électrochimique de matières organiques en s’organisant en biofilm à la surface d’anodes. Ce processus est à la base de procédés électro-microbiens très innovants tels que les piles à combustible microbiennes ou les électrolyseurs microbiens. L’interface biofilm/électrode a été l’objet de nombreuses étudesdont les conclusions restent difficiles à démêler en partie du fait de la diversité des paramètres interfaciaux mis en jeu. L’objet de ce travail de thèse est d’exploiter les technologies microsystèmes pour focaliser l’impact de la topographie de surface des électrodes sur le développement du biofilm et sur ses performances électro-catalytiques. La formation de biofilmsélectroactifs de Geobacter sulfurreducens a été étudiée sur des électrodes d’or présentant des topographies bien contrôlées, sous la forme de rugosité, porosité, réseau de piliers, à des échellesallant du nanomètre à quelques centaines de micromètres. La présence de microrugosité a permis d’accroitre les densités de courant d’un facteur 8 par rapport à une surface lisse et son effet a étéquantifié à l’aide du paramètre Sa. Nous avons tenté de distinguer les effets des différentes échelles de rugosité sur le développement du biofilm et la vitesse des transferts électroniques.L’intérêt de la microporosité a été discuté. L’accroissement de surface active par la présence de micro-piliers s’est avéré très efficace et une approche théorique a donné des clés de compréhension et d’optimisation. Les connaissances acquises dans les conditions de culture pure ont finalement été confrontées avec la mise en oeuvre de biofilms multi-espèces issus d’un inoculum complexe provenant de sédiments marins. / Many microorganisms have the ability to catalyze the electrochemical oxidation of organic matterby self-organizing into biofilm on the surface of anodes. This process is the basis of highlyinnovative electro-microbial processes such as microbial fuel cells or microbial electrolysis cells.The biofilm/electrode interface has been the subject of numerous studies whose conclusionsremain difficult to disentangle partly because of the diversity of the interfacial parameters involved.The purpose of this thesis work is to exploit microsystem technologies to focus the impact ofelectrode surface topography on biofilm development and electro-catalytic performance. Theformation of electroactive biofilms of Geobacter sulfurreducens was studied on gold electrodespresenting well-controlled topographies, in the form of roughness, porosity, pillar networks, atscales ranging from nanometer to a few hundred micrometers. The presence of micro-roughnessincreased the current densities by a factor of 8 compared to a smooth surface and its effect wasquantified using the Sa parameter. We have tried to distinguish the effects of different roughnessscales on biofilm development and electron transfer rates. The suitability of micro-porosity wasdiscussed. The increase of active surface area by the presence of micro-pillars has proved veryeffective and a theoretical approach has given keys to understanding and optimization. Theknowledge acquired under pure culture conditions was finally confronted with the use of multispeciesbiofilms formed from a complex inoculum coming from marine sediments.
6

Piles à combustible microbiennes pour la production d'électricité couplée au traitement des eaux de l'industrie papetière / Microbial Fuel Cell for electricity production and water treatment of paper industry

Ketep, Françoise 09 November 2012 (has links)
L’objectif de la thèse est d’évaluer la faisabilité de la technologie de pile à combustible microbienne pour la production d’électricité couplée au traitement d’effluents de l’industrie papetière. La première partie du travail montre que de nombreux effluents papetiers permettent de former des biofilms anodiques efficaces. Lorsque les effluents sont complémentés en acétate et l’anode polarisée à -0,3V/ECS des densités de courant de 12 A/m² et des rendements faradiques de 90% ont été obtenus. Lorsque les effluents sont utilisés comme seuls substrats, les densités de courant atteignent 6 A/m² et les rendements faradiques 30%, avec des abattements de DCO jusqu’à 50%. Les biofilms anodiques optimaux ont été associées à des cathodes à air abiotiques pour concevoir des piles complètes. Des puissances surfaciques de 294 mW/m² à 596 mW/m² ont été obtenues avec deux effluents différents. / The objective of this thesis was to assess the feasibility of the microbial fuel cell technology for the production of electrical energy coupled with the treatment of pulp and paper effluents. The first part of work showed that various pulp and paper effluents are suitable to form efficient anodic biofilms. When the effluent was supplemented with acetate and the anode polarized between at -0.3 V/SCE, current densities of 12 A/m² and Coulombic efficiencies up to 90% were obtained. When effluents were provided as the sole substrate, current densities reached 6 A/m² and Coulombic efficiencies 30%, with COD removal around 50%. The optimal anodic biofilms were associated with associated with abiotic air cathodes to design complete microbial fuel cells. Power densities from 294 mW/m² to 596 mW/m² were obtained with two different effluents.
7

Ingénierie électrochimique pour déchiffrer les mécanismes de formation des biofilms électroactifs / Electrochemical engineering for deciphering the mechanisms of electroactive biofilm formation

Chong, Poehere 23 November 2018 (has links)
Les biofilms électroactifs (EA) sont des consortia de bactéries mono- ou multi-espèces qui ont la capacité de catalyser des réactions électrochimiques en échangeant des électrons avec les électrodes sur lesquelles ils se développent. Les biofilms EA ont ouvert la voie à de nombreux procédés électrochimiques innovants, l’exemple le plus connu étant la pile à combustible microbienne. Dans ce cadre, des électrodes tridimensionnelles poreuses sont couramment mises en oeuvre afin d’offrir aux biofilms EA une surface maximale pour se développer. Toutefois, à ce jour les études théoriques qui permettraient de guider l’élaboration de ces électrodes restent très peu nombreuses. Une synthèse bibliographique a mis en évidence l’importance cruciale de la taille des pores et a montré que des pores de l’ordre du millimètre conduisent aux densités de courant les plus élevées. La première partie de la thèse a donc été consacrée à caractérise l’impact de la taille des pores, entre 1 à 5 mm, sur le développement et les performances électrochimiques d’un biofilm EA multiespèces. Ces tailles permettent la colonisation microbienne sur plusieurs centimètres de profondeur et favorisent la stabilité du courant à long terme. Par contre, l’effet limitant des transferts de matière est significatif, particulièrement pour ce qui concerne les espèces tampon. Enfin, un découplage est mis en évidence entre la colonisation qui se déploie sur plusieurs semaines et l’établissement du courant qui se réalise en quelques jours seulement. Un second dispositif expérimental a mis en évidence une sélection des populations microbiennes en fonction des longueurs de pore de 5 à 24 mm. La deuxième partie de la thèse se focalise sur l’étude des premiers instants de formation du biofilm électroactif à la surface d’une électrode. Une tentative d’identification des mécanismes impliqués dans le mouvement des bactéries électroactives vers l’électrode est proposée. / Electroactive (EA) biofilms refer to single- or multi-species bacterial consortia, which have theability to catalyse electrochemical reactions by exchanging electrons with the electrodes on whichthey develop. EA biofilms have paved the way for many innovative electrochemical processes, themost well-known example is microbial fuel cell. In this context, 3-dimensional porous electrodesare commonly used to offer EA biofilms a maximum surface area for development. However, todate, very few theoretical studies have been carried out to guide the development of theseelectrodes. A bibliographic synthesis highlighted the importance of the pore size and indicated thatpore sizes of the order of a few millimetres lead to the highest current densities. The first part ofthe thesis was therefore devoted to characterizing the impact of size, between 1 and 5 mm, on thedevelopment and electrochemical performance of a multi-species EA biofilm. These sizes allowmicrobial colonization several centimetres deep and promote long-term current stability. However,limiting effect of the mass transfer is significant, particularly for the buffer species. Finally, adecoupling is highlighted between the colonisation, which takes place over several weeks, and theestablishment of the current which takes a few days only. A second experimental set up showsthat a selection occurs on the microbial populations in function of pore lengths from 5 to 24 mm.The second part of the thesis focuses on the study of the early stages of the EA biofilm formation at the electrode surface. In particular, an attempt to identify the mechanisms involved in the electroactive bacteria movement towards the electrode is proposed.
8

Towards microbial electrochemical technologies for metal recovery / Vers des technologies électrochimiques microbiennes pour la récupération de métaux

Anaya garzon, Juan 29 March 2019 (has links)
Metals, essential constituents of a vast number of products and industrial processes, are paradoxically confronted to a scarcity issue without precedents. Among the emerging technologies for sustainable metal recovery, bio-electrochemical systems (BES) stand at a research state with a potential application on low-content metal streams. They are based on electroactive bacteria that can exchange electrons with their environment to drive an (electro)chemical metal precipitation. The feasibility of three configurations of BES aiming to recover metals at low-energy and low-chemicals consumption was explored. A first approach inspired on metal-bacteria interactions aimed to transform gold and chromium ions into added-value products. A polarized cathode promoting the metal reduction and symbiotically producing metallic nanoparticles on bacteria was studied. A second configuration used a halophilic bioanode to recover a panel of metals including transition metals and rare earth elements from marine environments. Metals were not directly precipitated by the contact with bacteria, but via a gas-diffusion cathode coupled to the bioanode. The third configuration considered a neodymium electrochemical reduction coupled to an oxidation catalyzed by a bioanode. Here, the conventional metal-containing aqueous system was replaced by an ionic liquid, an emerging solvent suitable for REE electrodeposition. / Les métaux, composants essentiels d'un grand nombre de produits et de processus industriels, sont paradoxalement confrontés à un problème de pénurie sans précédent. Parmi les technologies émergentes pour la récupération durable des métaux, les systèmes bio-électrochimiques (BES) sont à la recherche d’une application potentielle sur des matrices aqueuses de métaux à faible teneur. Ils sont basés sur des bactéries dites électro-actives, pouvant échanger des électrons avec leur environnement afin de conduire une précipitation de (électro)chimique du métal. Le but étant d’explorer différents procédés de récupération de métaux à faible consommation d'énergie et de produits chimiques, trois configurations de BES ont été abordés. Une première approche inspirée des interactions métal-bactérie visait à transformer les ions d’or et de chrome en produits à valeur ajoutée. Une cathode polarisée favorisant la réduction des métaux et produisant de manière symbiotique des nanoparticules métalliques sur des bactéries a été étudiée. Une seconde configuration utilisait une bioanode halophile pour récupérer un panel de métaux comprenant des métaux de transition et des éléments de terres rares provenant d’environnements marins. Les métaux ne sont pas précipités directement par le contact avec les bactéries mais par une cathode à diffusion gazeuse couplée à la bioanode. La troisième configuration envisageait une réduction électrochimique au néodyme couplée à une oxydation catalysée par une bioanode. Le système aqueux contenant un métal conventionnel a été remplacé par un liquide ionique, un solvant émergent avantageux pour l'électrodéposition de terres rares.
9

Preparação e caracterização de bioanodos para biocélula a combustível etanol/O2 / Preparation and characterization of bioanodes for ethanol/O2 biofuel cell

Aquino Neto, Sidney de 19 September 2012 (has links)
Este trabalho descreve a preparação e caracterização de bioanodos para biocélula a combustível etanol/O2 utilizando enzimas desidrogenases, tanto com transferência eletrônica mediada como com transferência eletrônica direta. Na primeira etapa do trabalho, os resultados de cinética enzimática com as enzimas comerciais álcool desidrogenase e aldeído desidrogenase em solução e imobilizada mostraram claramente que os vários parâmetros cinéticos analisados devem ser considerados, a fim de se obter atividade máxima com os biocatalisadores; além disso, os resultados obtidos com as diferentes metodologias de imobilização empregadas (adsorção passiva e automontagem) confirmaram que tal etapa é crucial para a obtenção de um sistema viável. Os testes de semi-célula e estabilidade com transferência eletrônica mediada mostraram que o dendrímero PAMAM se mostra bastante atrativo na preparação de bioanodos para biocélula a combustível enzimática com ambas as metodologias testadas. Na segunda parte do trabalho, os resultados obtidos com os bioanodos preparados com as enzimas desidrogenases contendo o grupamento pirroquinolina quinona extraídas da bactéria Gluconobacter sp. 33 e purificadas em laboratório mostraram que ambos os protocolos de imobilização empregados nesta etapa (dendrímero PAMAM e Nafion-modificado) foram capazes de proporcionar um ambiente no qual as enzimas são capazes de realizar transferência eletrônica diretamente com superfícies de ouro e carbono. Com base nos resultados de caracterização eletroquímica, observou-se que a reação de interesse ocorre mais facilmente na presença de nanotubos de carbono, onde se acredita que os grupamentos heme-c permanecem em um arranjo mais adequado que facilita o processo de transferência eletrônica e consequentemente fornece maiores correntes catalíticas. Os testes de semi-célula etanol/O2 com transferência eletrônica direta mostraram que os bioanodos preparados tanto com a membrana Nafion-modificada quanto com o dendrímero PAMAM se mostraram capazes de gerar densidades de potência competitivas em relação a outros métodos de imobilização. / This work describes the preparation and characterization of bioanodes for ethanol/O2 biofuel cell using dehydrogenases enzymes, using either mediated electron transfer or direct electron transfer. First, investigation of the enzymatic kinetics of the commercial enzymes alcohol dehydrogenase and aldehyde dehydrogenase in solution and immobilized onto carbon platforms clearly showed that the analyzed kinetic parameters must be considered for achievement of maximum activity. The results obtained by using different immobilization methodologies (passive adsorption and self-assembly) confirmed that this step is crucial for attainment of a viable system. The half-cell and stability tests employing mediated electron transfer showed that PAMAM dendrimers seem to be very attractive for the preparation of bioanodes for enzymatic biofuel cell using the tested protocols. In the second part of the work, the results obtained with the bioanodes prepared with dehydrogenases enzymes containing the pyrroloquinoline quinone group, extracted from the bacteria Gluconobacter sp. 33 and purified in our laboratory, revealed that both immobilization protocols employed in this step (PAMAM dendrimers and modified-Nafion) were able to provide an environment in which the enzymes undergo direct electron transfer with gold and carbon surfaces. The electrochemical characterization results evidenced that the reaction of interest occurs more easily in the presence of carbon nanotubes. We believe that the c-heme groups remain in a more suitable arrangement in the nanotubes, which facilitates the electron transfer process and provides higher catalytic currents. Ethanol/O2 half-cell tests with direct electron transfer showed that both the bioanodes prepared with modified-Nafion membrane and PAMAM dendrimers were capable of generating competitive power densities as compared to other immobilization methods.
10

Preparação e caracterização de bioanodos para biocélula a combustível etanol/O2 / Preparation and characterization of bioanodes for ethanol/O2 biofuel cell

Sidney de Aquino Neto 19 September 2012 (has links)
Este trabalho descreve a preparação e caracterização de bioanodos para biocélula a combustível etanol/O2 utilizando enzimas desidrogenases, tanto com transferência eletrônica mediada como com transferência eletrônica direta. Na primeira etapa do trabalho, os resultados de cinética enzimática com as enzimas comerciais álcool desidrogenase e aldeído desidrogenase em solução e imobilizada mostraram claramente que os vários parâmetros cinéticos analisados devem ser considerados, a fim de se obter atividade máxima com os biocatalisadores; além disso, os resultados obtidos com as diferentes metodologias de imobilização empregadas (adsorção passiva e automontagem) confirmaram que tal etapa é crucial para a obtenção de um sistema viável. Os testes de semi-célula e estabilidade com transferência eletrônica mediada mostraram que o dendrímero PAMAM se mostra bastante atrativo na preparação de bioanodos para biocélula a combustível enzimática com ambas as metodologias testadas. Na segunda parte do trabalho, os resultados obtidos com os bioanodos preparados com as enzimas desidrogenases contendo o grupamento pirroquinolina quinona extraídas da bactéria Gluconobacter sp. 33 e purificadas em laboratório mostraram que ambos os protocolos de imobilização empregados nesta etapa (dendrímero PAMAM e Nafion-modificado) foram capazes de proporcionar um ambiente no qual as enzimas são capazes de realizar transferência eletrônica diretamente com superfícies de ouro e carbono. Com base nos resultados de caracterização eletroquímica, observou-se que a reação de interesse ocorre mais facilmente na presença de nanotubos de carbono, onde se acredita que os grupamentos heme-c permanecem em um arranjo mais adequado que facilita o processo de transferência eletrônica e consequentemente fornece maiores correntes catalíticas. Os testes de semi-célula etanol/O2 com transferência eletrônica direta mostraram que os bioanodos preparados tanto com a membrana Nafion-modificada quanto com o dendrímero PAMAM se mostraram capazes de gerar densidades de potência competitivas em relação a outros métodos de imobilização. / This work describes the preparation and characterization of bioanodes for ethanol/O2 biofuel cell using dehydrogenases enzymes, using either mediated electron transfer or direct electron transfer. First, investigation of the enzymatic kinetics of the commercial enzymes alcohol dehydrogenase and aldehyde dehydrogenase in solution and immobilized onto carbon platforms clearly showed that the analyzed kinetic parameters must be considered for achievement of maximum activity. The results obtained by using different immobilization methodologies (passive adsorption and self-assembly) confirmed that this step is crucial for attainment of a viable system. The half-cell and stability tests employing mediated electron transfer showed that PAMAM dendrimers seem to be very attractive for the preparation of bioanodes for enzymatic biofuel cell using the tested protocols. In the second part of the work, the results obtained with the bioanodes prepared with dehydrogenases enzymes containing the pyrroloquinoline quinone group, extracted from the bacteria Gluconobacter sp. 33 and purified in our laboratory, revealed that both immobilization protocols employed in this step (PAMAM dendrimers and modified-Nafion) were able to provide an environment in which the enzymes undergo direct electron transfer with gold and carbon surfaces. The electrochemical characterization results evidenced that the reaction of interest occurs more easily in the presence of carbon nanotubes. We believe that the c-heme groups remain in a more suitable arrangement in the nanotubes, which facilitates the electron transfer process and provides higher catalytic currents. Ethanol/O2 half-cell tests with direct electron transfer showed that both the bioanodes prepared with modified-Nafion membrane and PAMAM dendrimers were capable of generating competitive power densities as compared to other immobilization methods.

Page generated in 0.4237 seconds