• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 1
  • Tagged with
  • 21
  • 21
  • 8
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FOULING CONTROL IN ELECTRODIALYSIS FOR WASTEWATER APPLICATIONS

Alex, Andrew 06 1900 (has links)
Nutrient removal is one of the primary goals of wastewater treatment and large amounts of ammonia are present throughout the wastewater treatment process. Conventional ammonia removal technologies are energy intensive and do not result in recoverable forms of the nutrient. Anaerobic dewatering side-streams are the liquid recovered during the biosolids dewatering processes following anaerobic digestion. The dewatering side-streams contain high concentrations of ammonia (~1000 mg/L NH4-N) making them an excellent candidate for resource recovery technologies. In this study electrodialysis (ED) was investigated for ammonia (NH4-N) recovery from anaerobic dewatering side-streams with an emphasis on fouling and scaling control on ion exchange membranes (IEMs). The experimental set-up consisted of 3 bench-scale electrodialyzers operating in parallel. The dewatering side-stream (centrate) was collected directly from centrifuges at a local WWTP and pretreated using a 0.3-mm screen. Electrodialyzer operation over 2.25 hrs achieved 95% NH4-N removal and the ammonia separation rate was slowed down by the concentration gradient between concentrate and diluate streams. A combined 269 hrs of operation during fouling experiments showed that electrodialysis (ED) performance decreased over time due to IEM fouling and thus clean-in-place (CIP) procedures was conducted every 60-120 hrs to restore the ED effectiveness. The two stage CIP procedures consisted of a NaCl Clean (5% NaCl, 2 hrs recirculation) and an Acid Clean (5% v/v HCl, 2 hrs recirculation). The NaCl Clean targeted organic fouling and the Acid Clean removed scales that precipitated on the IEMs. CIP procedures were able to recover 84-90% of the initial separation efficiency, the permanent loss in separation efficiency indicating that a portion of IEM fouling (10-16%) is irreversible. The higher applied voltage condition (7.5 V) showed faster fouling rates compared to low voltage conditions (4.5 V), while the degree of irreversible fouling was independent of the applied voltage. Organic fouling and inorganic scaling were individually quantified during CIP procedures using electrochemical impedance spectroscopy (EIS). While both fouling and scaling contributed significantly to the overall increase in the IEM stack resistance (63% scale formation, 37% organic fouling), inorganic scaling was found to play a more important role in reducing the separation rate in ED. ICP and SEM-EDS analysis identified the scale that formed on the surface of the IEMs as mostly of CaCO3 precipitation with smaller amounts of struvite. This finding indicates that the pretreatment of dewatering side-streams should be more focused on removing divalent cations (Ca2+ and Mg2+), but also still consider organic foulant removal for its treatment in ED. Since organic fouling primarily affects anion exchange membranes (AEMs), the impacts of fouling were investigated on two types of AEMs (AR908, AR204). Fouling experimentation showed minor differences in current density and separation efficiency over 269 hrs of operation, with AR204 AEMs showing signs of worse irreversible fouling. Particle size analysis of centrate suggested that large suspended particles could obstruct electrodialyzer chambers. Screening pretreatment (0.3 mm) effectively removed large particles and mitigated clogging issues without having to increase intermembrane distances. The experimental results suggest that ED is a promising technology for recovering ammonia from nutrient rich wastewaters. ED was able to efficiently achieve high levels of ammonia separation from centrate, while fouling was shown to be manageable using CIPs at reasonable intervals. Overall ED was shown to be an effective way to recover ammonia from dewatering side-streams, but pretreatments targeting scaling and organic fouling could better mitigate performance losses due to fouling and further improve the process. / Thesis / Master of Applied Science (MASc)
2

Co-combustion of Industrial Biosludge and other Residual Streams in a Bubbling Fluidized Bed : Focusing on reduction of operating and technical problems by analyzing the ash transformation chemistry / Samförbränning av industriellt bioslam och andra restströmmar i en bubblande fluidiserande bädd : Med fokus på reduktion av drifttekniska problem genom att analysera askkemin

Öberg, Christian January 2016 (has links)
Today the use of resources in the industry are not complete to be considered as sustainable from the perspective of nutrient recovery. In the Swedish pulp and paper industry residual streams such as bark, fiber reject and sludge are returned for more sustainable use more frequently. Around 300 000-600 000 tons of sludge is generated every year from different cleaning processes in the pulp and paper industry. About 15 % of that sludge is so called biosludge that is a result from biological water treatment, where large amounts of phosphorus are used. After the cleaning process the total amount of biosludge generated in Sweden each year is estimated to contain approximately 2000 tons of phosphorus (P). The most common way to discard the biosludge today is by incineration, where aspects such as high content of moisture and ash have proven to be problematic. Besides phosphorus, other elements such as sulfur (S), chlorine (Cl) and calcium (Ca) are often found in the biosludge in larger amounts.   This study included co-combustion experiments of current residual streams from the pulp and paper mill SCA Obbola AB where the aim was to investigate how the ash transformation chemistry was affected. The residual streams comprised of bark, fiber reject and biosludge which were combusted together with stem wood in a bench scaled bubbling fluidized bed. To investigate if different ash related operating and technical problems could be reduced and if there was potential of phosphorus recycling from the ashes, produced ash and other samples were examined by SEM/EDS. The fuel mix from SCA Obbola consisted of large amounts of Ca, S and P relative to more ordinary biomass fuels like stem wood. These elements originated from the biosludge and was confirmed by the fuel analysis. Analysis made on collected samples showed that Ca and P together formed phosphates that either stayed in the bed or was collected in the cyclone which indicated that there could be a potential for recovering phosphorus. Although, the Ca/P ratio in the ashes was too high, which probably leads to that phosphates unsuitable for nutrient recovery are formed.   The fiber reject from SCA Obbola contained large amounts of chlorine according to the fuel analysis which was indicated from the results later in the study. During the combustion most of the Cl left the bottom ash via volatilization. It was true for both the fuel blends with and without fiber reject. When larger amounts of biosludge was added to the fuel mix less of the corrosive compound potassium chloride (KCl) was found in depositions and collected fine particulate matter (PM). This was due to that more sulfur was added in the system when the amount of biosludge was increased which lead to that K reacted with SO2 instead of Cl and formed K2SO4. The observed reduction of KCl resulted in; 1) lower amounts of fine particulate matter which means less loaded particulate filters 2) less risk of high temperature corrosion on heat transfer surfaces. The general conclusion that could be drawn from this study was that by increasing the amount of biosludge in the fuel blend at already high mixings of fiber reject, problems such as corrosion and fine particulate matter could be reduced. These advantages must be considered to the amount of lime stone needed to be added for reducing HCl from a cost perspective.
3

Återvinning av näringsämnen från hushållsspillvatten med omvänd osmos / Recycling Nutrients from Municipal Wastewater by Reverse Osmosis

Blennow, Kristina January 2005 (has links)
<p>Hammarby Sjöstad is a new district in Stockholm with high environmental standard. Stockholm Water Company evaluates a local wastewater treatment plant with cutting edge technology. The first step is an experimental treatment plant (Sjöstadsverket) with four parallel lines of treatment, each with a capacity to treat wastewater from 150 persons. Within the membrane technology subproject the possibility of using reverse osmosis (usually called RO) to regain nutrients is examined.</p><p>Reverse osmosis separates the incoming water in a clean permeate and a concentrate that, as the name indicates, is a more concentrated version of the incoming water. Using this method in wastewater treatment, a solution high in nutrients can be obtained without the use of chemical precipitation agent and with no production of sludge. The solution can then be recycled to use on farmland. The disadvantages of the RO technology include high energy consumption and sensitivity to membrane fouling.</p><p>The aim of this study was to investigate the possibility of using RO at Sjöstadsverket and, if possible, to evaluate the chance of obtaining concentrate that can be accepted as a fertiliser and permeate that falls below emission limits. The experiments were carried out with an RO plant with three membranes in series operated in batch mode; the dimensioned permeate flow being 100 l/h. The incoming water was permeate from a membrane bioreactor in the majority of the trial runs.</p><p>The results show that RO can be used in at least one of the lines of treatment. However the permeate exceeds the emission limits (phosphorus: 0,15 mg/l, nitrogen: 6 mg/l) while concentration in the concentrate is still too low. The limiting factor seems to be phosphorus. This could be solved with pre-precipitation of phosphorus or by reconstructing the RO plant to a two-stage system. The quota heavy metal – phosphorus in the concentrate is lower than the limit imposed by the Swedish Environmental Protection Agency but much higher than in human urine.</p> / <p>Som en del i miljöarbetet i Stockholms nya stadsdel Hammarby Sjöstad utvärderar Stockholm Vatten ett lokalt reningsverk med spetsteknologi. I ett första steg har ett reningsverk (Sjöstadsverket) med fyra parallella reningslinjer byggts. Varje linje har kapacitet att rena avloppsvatten från 150 personer. Inom delprojektet membranteknik undersöks möjligheterna att som slutsteg på flera av linjerna återvinna näringsämnen med hjälp av omvänd osmos (eller RO efter engelskans reverse osmosis).</p><p>En RO separerar det inkommande vattnet i ett rent permeat och ett koncentrat som, liksom namnet antyder, är en koncentrerad form av det inkommande vattnet. Inom avloppsvattenrening kan alltså en lösning med hög koncentration av näringsämnen uppnås utan fällningskemikalier och uppkomst av slam. Denna kan sedan återföras till jordbruket. Till teknikens nackdelar hör hög energiförbrukning och stor känslighet för partiklar som kan sätta igen membranen.</p><p>Syftet med denna studie var att undersöka om det går att använda RO på Sjöstadsverket och att i så fall utvärdera koncentratets och permeatets möjlighet att bli accepterat gödselmedel respektive godkänt utloppsvatten. Försöken gjordes satsvis på en anläggning med tre seriekopplade membran dimensionerad för ett totalt permeatflöde på 100 l/h. Det inkommande vattnet var, i nästan alla försök, permeat från en membranbioreaktor.</p><p>Resultaten visar att RO:n kan användas åtminstone på en av reningslinjerna. Däremot kan inte en tillräckligt hög koncentration uppnås i koncentratet utan att gränsvärdena (fosfor: 0,15 mg/l, kväve: 6 mg/l) i permeatet överskrids. Den begränsande faktorn verkar framför allt vara fosfor. Lösningen på problem skulle kunna vara förfällning av fosfor eller en utbyggnad av anläggningen till en två-stegsprocess. Kvoten tungmetallfosfor i koncentratet klarar Naturvårdsverkets gränsvärden för vad som får spridas på åkermark, men är klart högre än i humanurin.</p>
4

Återvinning av näringsämnen från hushållsspillvatten med omvänd osmos / Recycling Nutrients from Municipal Wastewater by Reverse Osmosis

Blennow, Kristina January 2005 (has links)
Hammarby Sjöstad is a new district in Stockholm with high environmental standard. Stockholm Water Company evaluates a local wastewater treatment plant with cutting edge technology. The first step is an experimental treatment plant (Sjöstadsverket) with four parallel lines of treatment, each with a capacity to treat wastewater from 150 persons. Within the membrane technology subproject the possibility of using reverse osmosis (usually called RO) to regain nutrients is examined. Reverse osmosis separates the incoming water in a clean permeate and a concentrate that, as the name indicates, is a more concentrated version of the incoming water. Using this method in wastewater treatment, a solution high in nutrients can be obtained without the use of chemical precipitation agent and with no production of sludge. The solution can then be recycled to use on farmland. The disadvantages of the RO technology include high energy consumption and sensitivity to membrane fouling. The aim of this study was to investigate the possibility of using RO at Sjöstadsverket and, if possible, to evaluate the chance of obtaining concentrate that can be accepted as a fertiliser and permeate that falls below emission limits. The experiments were carried out with an RO plant with three membranes in series operated in batch mode; the dimensioned permeate flow being 100 l/h. The incoming water was permeate from a membrane bioreactor in the majority of the trial runs. The results show that RO can be used in at least one of the lines of treatment. However the permeate exceeds the emission limits (phosphorus: 0,15 mg/l, nitrogen: 6 mg/l) while concentration in the concentrate is still too low. The limiting factor seems to be phosphorus. This could be solved with pre-precipitation of phosphorus or by reconstructing the RO plant to a two-stage system. The quota heavy metal – phosphorus in the concentrate is lower than the limit imposed by the Swedish Environmental Protection Agency but much higher than in human urine. / Som en del i miljöarbetet i Stockholms nya stadsdel Hammarby Sjöstad utvärderar Stockholm Vatten ett lokalt reningsverk med spetsteknologi. I ett första steg har ett reningsverk (Sjöstadsverket) med fyra parallella reningslinjer byggts. Varje linje har kapacitet att rena avloppsvatten från 150 personer. Inom delprojektet membranteknik undersöks möjligheterna att som slutsteg på flera av linjerna återvinna näringsämnen med hjälp av omvänd osmos (eller RO efter engelskans reverse osmosis). En RO separerar det inkommande vattnet i ett rent permeat och ett koncentrat som, liksom namnet antyder, är en koncentrerad form av det inkommande vattnet. Inom avloppsvattenrening kan alltså en lösning med hög koncentration av näringsämnen uppnås utan fällningskemikalier och uppkomst av slam. Denna kan sedan återföras till jordbruket. Till teknikens nackdelar hör hög energiförbrukning och stor känslighet för partiklar som kan sätta igen membranen. Syftet med denna studie var att undersöka om det går att använda RO på Sjöstadsverket och att i så fall utvärdera koncentratets och permeatets möjlighet att bli accepterat gödselmedel respektive godkänt utloppsvatten. Försöken gjordes satsvis på en anläggning med tre seriekopplade membran dimensionerad för ett totalt permeatflöde på 100 l/h. Det inkommande vattnet var, i nästan alla försök, permeat från en membranbioreaktor. Resultaten visar att RO:n kan användas åtminstone på en av reningslinjerna. Däremot kan inte en tillräckligt hög koncentration uppnås i koncentratet utan att gränsvärdena (fosfor: 0,15 mg/l, kväve: 6 mg/l) i permeatet överskrids. Den begränsande faktorn verkar framför allt vara fosfor. Lösningen på problem skulle kunna vara förfällning av fosfor eller en utbyggnad av anläggningen till en två-stegsprocess. Kvoten tungmetallfosfor i koncentratet klarar Naturvårdsverkets gränsvärden för vad som får spridas på åkermark, men är klart högre än i humanurin.
5

BIOCHARS AS AMENDMENTS FOR SASKATCHEWAN AGRICULTURAL SOILS

2014 May 1900 (has links)
Biochars are the product of high temperature treatment of carbonaceous materials with little or no oxygen present, termed “pyrolysis”. Biochars derived from the pyrolysis of biomass feedstocks have proven effective amendments on highly weathered tropical soils. However less is known about their impact on temperate soils and associated crop growth. Moreover, there is inadequate knowledge of the impacts of different biochars produced from different feedstocks under differing pyrolysis conditions. Therefore, a study was conducted to evaluate the effectiveness of different biochars as amendments to improve soil conditions for crop growth, with emphasis on soil fertility and crop nutrition impacts. The response of canola-wheat in rotation to five biochars was evaluated in controlled environment and field experiments conducted on Brown and Black Chernozem soils over a two-year period. Treatments were biochar added at 1 and 2 t ha 1 without and with nitrogen (N) and phosphorus (P) fertilizers at 50 or 100 kg N ha 1 and 25 kg P2O5 ha 1. Parameters evaluated were crop biomass and grain yield, N and P uptake, % recovery of applied N and P, residual soil nutrients (NO3 N, and PO4+ P), pH, electrical conductivity (EC), % organic carbon (% OC) and gravimetric soil moisture. Biochar application resulted in significant increases (p<0.05) in canola yield compared to the control for two fast pyrolysis biochars originating from wheat and flax straw added to the Black Chernozem soil in both studies. No significant response was observed for any of the biochars on the Brown Chernozem. Slow pyrolysis biochar derived from willow feedstock appeared less effective did not show any significant response. Occasional depressions in crop yield were observed in both crops with both soils. In these calcareous Chernozems, biochar did not greatly alter the N and P availability, and its effects on soil pH, % OC, EC and moisture content were small and often non-significant. These results suggest that biochar applications at 1 2 t ha 1 to prairie Chernozemic soils will not have large effects on soil properties or plant growth. Higher rates of application will require development of application technology due to the dusty, powdery nature of the biochar material.
6

Struvite Recovery From Source-Separated Urine Utilizing Fluidized Bed Technology

Gagnon, Alexandria Augusta 06 September 2016 (has links)
Source-separating urine for nutrient recovery may provide multiple benefits with regards to wastewater management, water conservation, and an impending phosphorus fertilizer shortage. Municipal wastewater systems are designed to treat the combination of urine, feces and graywater produced in household applications. Urine accounts for 1% of wastewater by volume, but provides 70-90% of nitrogen, 35-70% of phosphorus and 50% of the contaminants of emerging concern entering municipal wastewater treatment (Larsen and Gujer 1996). Research has shown managing source-separated urine for nutrient recovery is a more cost effective and less treatment intensive method than using traditional systems found in municipal wastewater plants. Phosphorus fertilizer shortages are projected as current sources diminish and become increasingly difficult to extract and refine. Phosphorus based-fertilizer recovery, in the form of 99.9% pure struvite (MgNH4PO4•6H2O), has been demonstrated successfully in full-scale sidestream treatment using dewatering liquor from anaerobically digested solids (centrate) processed through upflow fluidized bed reactor technologies (Britton et al. 2005). Prior research determined the influence of pH, magnesium to phosphorus (Mg:P) molar ratio, and age of urine on purity, pharmaceutical content and pathogen inclusion in struvite precipitated from source-separated urine. This is the first known example of an attempt to produce a commercially viable struvite product from source-separated urine in a fluidized bed reactor of a design that has been used successfully for struvite recovery in conventional wastewater applications. In order to assess the feasibility of nutrient recovery of phosphorus-based fertilizer recovery from source-separated urine, the first office-based urine separation and collection building was implemented in the U.S. Urine was collected, in a 400 gallon capacity underground sealed manhole, from HRSD's Main office building beginning in March 2015 from 5 men's waterless urinals and one women's separating toilet. Urine was collected from the manhole on a monthly basis in 275 and 330 gallon plastic totes stored at the HRSD Nansemond WWTP in Suffolk, VA. Collected urine was allowed to age while in storage to encourage the precipitation of excess multivalent cations that may interfere with struvite precipitation and inactivation of pathogens that may be present. An upflow fluidized bed reactor (UFBR) was used to recover struvite as a slow-release phosphorus based fertilizer (prill), the reactor was loaned to HRSD by the University of British Columbia. A magnesium solution was injected at the bottom of the reactor to facilitate precipitation along with the recycle urine stream and feed urine as shown. Prill production design for the reactor was 0.5 kilograms per day, but while using centrate to determine best operations practices, under loading the reactor to 0.25 kilograms per day maximized struvite recovery while minimizing particulate phosphorus loss. Urine was fed into the reactor for struvite removal based on phosphorus loading with recovery determined through removal of orthophosphate and harvesting of the struvite product. Consistency, size and quality of product including compactness, crystal structure, purity and presence of pharmaceuticals and pathogens were assessed. The UFBR was run for 50 days total; 10 days for a short term run to compare to operation of the reactor under the same conditions with centrate from anaerobically digested solids as a feed source, 30 days to assess consistency of operations over long term with respect to struvite recovery, and a 10 day test with urine spiked with pharmaceuticals and bacteriophage to evaluate inclusion of trace organics and viruses in recovered struvite. In total 2,040 gallons of urine were fed to the reactor targeting 12.45 kilograms of struvite recovery, a mass of 7.54 kilograms of prills were harvested from the reactor with 1.90 kilograms of phosphorus lost as particulate struvite (representing an recovery efficiency of 60.5%). Overall reactor operation using urine as a feed solution behaved similar to centrate, with slightly less removal of phosphorus. Urine-derived prills were lower in quality due to the lack of compact density seen in struvite recovered during full scale operation but had a visible orthombic pattern seen in precipitated struvite. Pharmaceuticals that were present in urine feed solution were found in struvite but at less than 1% of the feed mass. Some of this inclusion may have occurred due to porous characteristics of the small-scale UFBR recovered struvite rather than through actual inclusion in the mineral crystal itself. Spiking of caffeine and ibuprofen to high concentrations in the urine yielded no statistical difference from the non-spiked tote. Urine was non-detect for bacteriophage pathogen indicators leading to the assumption that no pathogens were present in urine-derived struvite. Spiking the urine with double-stranded DNA (T3) and single-stranded RNA (MS2) bacteriophage capable of infecting bacterial cells such as Escherichia coli yielded 10^6 plaque forming units per milliliter in source separated urine. Creating urine-derived struvite prills with minimal inclusion of pharmaceuticals using upflow fluidized bed technology is feasible on a small scale. Large-scale application, recovering 500 kilograms per day of struvite or more, will most likely create a higher quality prill with regards to compactness and diminished presence of pharmaceuticals and virus inclusion. Pretreatment of urine and post-treatment of prills with heat will aid in inactivation of virus that may be present. ' / Master of Science
7

Sustainable Wastewater Treatment: Nutrient Separation, Energy Recovery and Water Reuse

Tice, Ryan C January 2014 (has links)
There is a growing awareness of the valuable nutrients (nitrogen and phosphorus) being lost in conventional wastewater treatment systems. Although the removal of these nutrients has been well addressed, efforts for nutrient recovery have seen little development. As the emphasis on sustainability in the wastewater treatment industry increases, conventional wastewater treatment processes are being re-evaluated and new treatment systems developed. A possible nutrient recovery mechanism is the precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4·6H2O), commonly known as struvite. Human urine has been identified as a rich source of nutrients in wastewater; hence the separate collection of urine is considered a viable method of enabling struvite recovery. Since dilution of urine to a certain degree is inevitable, reconcentration of urine beyond the solubility limit of struvite is critical. Currently available methods for reconcentration (e.g., evaporation, freeze-thaw, reverse osmosis and electrodialysis) are relatively expensive with high energy demand. Thus, the research here aims to demonstrate nutrient reconcentration from diluted urine and simultaneous organic removal by using the principles of microbial desalination cells (MDCs), where energy released from organic oxidation is partially used for the separation of nutrient ions. With reduced energy demand, a sustainable method for the utilization of source-separated urine is examined. The performance of bioelectrochemical systems relies on the activity of exoelectrogenic bacteria to transfer electrons to the anode. An examination of exoelectrogen sensitivity at various wastewater treatment conditions (i.e. ammonia and oxygen) is an important component of this research. Methanogenesis is considered the greatest challenge in achieving practical applications in anaerobic bioelectrochemical systems. An electrolytic oxygen production method is suggested for effective control of methanogenesis in a feasible and cost-effective manner. / Thesis / Master of Applied Science (MASc)
8

MICROBIAL ELECTROCHEMISTRY APPLICATIONS FOR NUTRIENT RECOVERY AND ORGANIC DETECTION IN WASTEWATER TREATMENT

Yuan, Pengyi January 2017 (has links)
This thesis presents research work on microbial electrochemistry applications for phosphorus recovery from real wastewater and bioanode sensor development. Phosphorus is a valuable but limited resource which is essential for land fertilizers. Recovering phosphorus using microbial electrolysis cells has been emphasized in wastewater treatment research. Stainless steel mesh (SSM) cathode MECs used in this study showed insufficient phosphorus recovery (68%) because struvite crystals were smaller than the open space between mesh wires (80 µm). Besides, lack of readily biodegradable substrates in the dewatering centrate resulted in limited electric current generation (< 0.2 A/m2) and local pH condition near the cathode. Thus, the following experiments were conducted with stainless steel foil (SSF) cathodes and acetate addition to improve recovery efficiency. Under high electric current density (> 2 A/m2), a thick layer of struvite crystals was formed on the SSF cathode and the phosphorus recovery was increased to 96%. These findings prove that MECs can applied as efficient tools to recover nutrients from real wastewater. Bioanode sensors can be used for real-time and in-situ assessment of water quality. However, the sensor performances are often limited by the narrow detection range, long analysis time, and hysteresis. In order to overcome the challenges for practical applications, a new operation method consisting of three sequences (Normal Operation, Reset Step, and Test Step) was proposed and examined using MEC-based bioanode sensors. Reset Step can eliminate hysteresis effects and produce accurate linear correlations between the soluble COD (chemical oxygen demand) and electric current. The total analysis time was found to be 3 min or even less. The increased detection range (from 75 to 130 mg-COD/L) was achieved by applying a high applied voltage during Test Step. The demonstrated results indicate that MECs can be used for accurate estimation of biodegradable organics in natural or engineered water systems. / Thesis / Master of Applied Science (MASc)
9

Exploring Forward Osmosis Systems for Recovery of Nutrients and Water

Wu, Zhenyu 19 January 2018 (has links)
Livestock wastewater contains a large amount of nutrients that are available for recovery. In this study, a proof of concept process based on forward osmosis (FO) was proposed and investigated for in-situ formation of struvite from digested swine wastewater. This FO system took advantage of a drawback reverse solute flux (RSF) and used the reversed-fluxed Mg^{2+} for struvite precipitation, thereby accomplishing recovery of both water and nutrient. With 0.5 M MgCl2 as a draw solution, high purity struvite formed spontaneously in the feed solution and the water flux through the FO membrane reached 3.12 LMH. The precipitated struvite was characterized and exhibited a similar composition to that of commercial struvite. The FO system achieve >50% water recovery, >99% phosphate recovery (given sufficient magnesium supply), and >93% ammonium nitrogen removal from the digested swine wastewater. The recovered products (both struvite and water) could potentially generate a value of 1.35 $ m^{-3}. The results of this study have demonstrated the feasibility of nutrient recovery from livestock wastewater facilitated by FO treatment. / Master of Science
10

Influence of Processing Parameters on Nutrient Recovery During Ultrafiltration of Milk and Meltability of Pasteurized Process Cheese Food made from the Retentate

Collinge, Susan Kay Fortier 01 May 1989 (has links)
Three batches of milk were ultrafiltered to 60, 65, or 70% volume reduction before diafiltration. Starting diafiltration at 70% volume reduction took less time and water without affecting nutrient recovery. Whole milk was heated to 60, 72, and 82°C for 16 s. Milk representing each heat treatment was divided into three batches, one unacidified (pH 6.6), the others acidified to pH 6.2 and 5.8. The milk was ultrafiltered, diafiltered, and concentrated to 5x (80% volume reduction). Retentate was inoculated with .5% lactic culture and incubated at 28°C to pH 5.1. Each lot of fermented retentate was evaporated under 76 kPa vacuum until moisture was reduced to 35-38%, then made into pasteurized process cheese food by cooking to 82°C. The final product contained 43-44% moisture, 24-28% fat, 1.7% salt, and 2.5% sodium citrate. Fat and protein recovery were not affected by heat treatment or pH adjustment of the milk. Recovery of calcium, phosphorus, and riboflavin were significantly reduced following acidification of milk. Riboflavin recovery was higher when milk was preheated to 60°C as opposed to 72 or 82°C. Effect of cooking temperature on meltability of process cheese food was evaluated by repeating the above experiment at three cooking temperatures, 70, 76, or 81 °C. Cooking temperature significantly affected meltability. Cheese cooked to 70°C melted best for all treatments. At all cooking temperatures, cheese from unacidified milk (pH 6.6) had greater meltability than cheese from milk acidified to pH 5.8 or 6.2. Cooking temperature had a greater effect on meltability of process cheese food made from ultrafiltered retentate than calcium content. Preheating milk before ultrafiltration did not significantly affect meltability of pasteurized process cheese food. Meltability of pasteurized process cheese food was best when made from retentate heated (following ultrafiltration) to 61°C for 16 sand poorest when retentate was heated to 72 or 83°C. During ultrafiltration without diafiltration, amino acid analysis was on samples taken at 0, 20, 40, 60, and 80% volume reduction. There were no differences in amino acid composition (g/100 g protein) between milk and 5x retentate. Soluble nitrogen at pH 4.6 in pasteurized process cheese food was an approximate measure of undenatgred whey protein. As processing temperature increased from 66 to 82°C, undenatured whey protein decreased. Decrease in meltability due to increased processing temperature was related to denaturation of whey protein. Process cheese food made from blends of UF curd and Cheddar cheese had acceptable meltability with up to 66% UF curd when the final processing temperature was 68°C. Milk with high bacterial numbers (7.8 x 106 CFU/ml) was heated to 72°C for 16 s, acidified to pH 5.8 and ultrafiltered to a 5x concentration. Ultrafiltration proceeded normally and no processing difficulties were encountered.

Page generated in 0.0985 seconds