• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mozzarella cheese : relationships between chemical composition, ultrastructure and functional properties

Savage, Alison Anne January 1998 (has links)
No description available.
2

Meltability and Rheology of Model Process Cheese containing acid and rennet casein

Savello, Paul Alexander 01 May 1983 (has links)
Process cheese models were prepared by blending acid or rennet casein, milk fat, sodium chloride, 2.5% emulsifying salt and water and heating to 80 C. Acid casein cheese models were subjected to sodium hydroxide conditioning at 65 C in the cooker. Model process cheeses were acidified with lactic acid and treated by addition of undenatured and heat-denatured whey protein, four different emulsifying salts and sodium oxalate. Meltability and toughness of the model cheese increased to a maximum with increased sodium hydroxide conditioning of acid casein to pH 7.20. These same properties decreased with addition of undenatured and heat-denatured whey protein to both casein cheese models. Loss of emulsion occurred during the meltability test of rennet casein cheese models with 3.0 and 4.5% added whey protein. Emulsifying salts affected the models differently. Disodium phosphate and tetrasodium pyrophosphate in rennet casein models eliminated the melting property. These same salts in acid casein models produced excellent meltability. Trisodium citrate produced cheeses with good meltability in both acid and rennet casein cheese models. Acid casein cheese models prepared with sodium aluminum phosphate had fair meltability and were very tender (no rupture upon compression). Chelation of calcium by sodium oxalate in rennet casein cheese emulsified with disodium phosphate or tetrasodium pyrophosphate improved meltability with a corresponding increase in toughness. Scanning electron micrographs of model process cheeses indicated a direct relationship between extent of emulsification and poor meltability of rennet and pH conditioned acid casein model cheeses. Acid casein model cheeses prepared with different emulsifying salts did not exhibit this same relationship. Addition of whey protein concentrate to rennet case~n model cheese produced fibrous structures around the fat globules. No structural abnormalities were noted in the acid casein cheeses prepared with whey protein concentrate.
3

Influence of Processing Parameters on Nutrient Recovery During Ultrafiltration of Milk and Meltability of Pasteurized Process Cheese Food made from the Retentate

Collinge, Susan Kay Fortier 01 May 1989 (has links)
Three batches of milk were ultrafiltered to 60, 65, or 70% volume reduction before diafiltration. Starting diafiltration at 70% volume reduction took less time and water without affecting nutrient recovery. Whole milk was heated to 60, 72, and 82°C for 16 s. Milk representing each heat treatment was divided into three batches, one unacidified (pH 6.6), the others acidified to pH 6.2 and 5.8. The milk was ultrafiltered, diafiltered, and concentrated to 5x (80% volume reduction). Retentate was inoculated with .5% lactic culture and incubated at 28°C to pH 5.1. Each lot of fermented retentate was evaporated under 76 kPa vacuum until moisture was reduced to 35-38%, then made into pasteurized process cheese food by cooking to 82°C. The final product contained 43-44% moisture, 24-28% fat, 1.7% salt, and 2.5% sodium citrate. Fat and protein recovery were not affected by heat treatment or pH adjustment of the milk. Recovery of calcium, phosphorus, and riboflavin were significantly reduced following acidification of milk. Riboflavin recovery was higher when milk was preheated to 60°C as opposed to 72 or 82°C. Effect of cooking temperature on meltability of process cheese food was evaluated by repeating the above experiment at three cooking temperatures, 70, 76, or 81 °C. Cooking temperature significantly affected meltability. Cheese cooked to 70°C melted best for all treatments. At all cooking temperatures, cheese from unacidified milk (pH 6.6) had greater meltability than cheese from milk acidified to pH 5.8 or 6.2. Cooking temperature had a greater effect on meltability of process cheese food made from ultrafiltered retentate than calcium content. Preheating milk before ultrafiltration did not significantly affect meltability of pasteurized process cheese food. Meltability of pasteurized process cheese food was best when made from retentate heated (following ultrafiltration) to 61°C for 16 sand poorest when retentate was heated to 72 or 83°C. During ultrafiltration without diafiltration, amino acid analysis was on samples taken at 0, 20, 40, 60, and 80% volume reduction. There were no differences in amino acid composition (g/100 g protein) between milk and 5x retentate. Soluble nitrogen at pH 4.6 in pasteurized process cheese food was an approximate measure of undenatgred whey protein. As processing temperature increased from 66 to 82°C, undenatured whey protein decreased. Decrease in meltability due to increased processing temperature was related to denaturation of whey protein. Process cheese food made from blends of UF curd and Cheddar cheese had acceptable meltability with up to 66% UF curd when the final processing temperature was 68°C. Milk with high bacterial numbers (7.8 x 106 CFU/ml) was heated to 72°C for 16 s, acidified to pH 5.8 and ultrafiltered to a 5x concentration. Ultrafiltration proceeded normally and no processing difficulties were encountered.
4

The Effect of Freezing Rate on Quality Attributes of Low-Moisture Part-Skim Mozzarella

Bunker, Helen Sarah 28 October 2016 (has links)
No description available.

Page generated in 0.0414 seconds