• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A microscale approach to optimizing the performance of microbial fuel cells

Abbaszadeh Amirdehi, Mehran 01 February 2021 (has links)
Une pile microbienne (MFC) est un type de système bioélectrochimique (BES) dans lequel l'oxydation d'un large éventail de molécules organiques produit un courant électrique utilisable à travers un circuit externe. En tant que tel, ces biofilms respirant les anodes (BRA) ont établi les MFC comme une technologie d’énergie propre de nouvelle génération prometteuse, car ils peuvent produire de l’électricité tout en atteignant simultanément une biorestauration. Les MFC offrent également des solutions durables pour les systèmes d'alimentation distribués et le traitement des eaux usées pouvant être exploités localement àla source de la génération de celles-ci, telles que les maisons et les sites industriels, afin de réduire la dépendance aux installations centralisées. Les MFC ont même fait leurs preuves en tant que sources d'alimentation pour les dispositifs implantés autonomes et la détection à distance. Ce travail vise à améliorer l'efficacité des MFC en se concentrant sur les considérations à l'échelle microscopique. Les progrès techniques dans les électrodes microstructurées et la conception de MFC microfluidique sont démontrés. Ces développements ouvrent des possibilités d'optimisation et de recherche fondamentale sur les MFC et la technologie BES associée. Plus précisément, ces travaux démontrent des améliorations basées sur la structure et les matériaux des électrodes et leur intégration dans des canaux microfluidiques protégés contre les gaz présentant une configuration sans membrane. Le résultat est le MFC microfluidique le plus stable jamais décrit dans la littérature, capable de temps de fonctionnement les plus longs sur la plage de débit la plus large. Nous utilisons cette conception d'appareil robuste pour étudier l'effet du débit afin de surmonter les limitations de la disponibilité des nutriments sur les rendements de puissance, les problèmes de dépassement de puissance, ainsi que d'autres obstacles qui ont un impact plus large sur les MFC dans le secteur des énergies alternatives / A microbial fuel cell (MFC) is a type of bioelectrochemical system (BES) in which oxidation of a broad range of organic molecules produces a usable electric current through an external circuit. As such, such anode respiring biofilms (ARBs) have positioned MFCs as a promising next-generation clean energy technology because they can produce electricity while simultaneously achieving bioremediation. MFCs also offer sustainable solutions for distributed power systems and wastewater treatment that can be operated locally at the source of wastewater generation, such as homes and industrial sites, to reduce reliance on centralized facilities. MFCs have even been demonstrated as power sources for autonomous implanted devices and remote sensing. This work seeks to improve the efficiency of MFCs by focusing on the microscale considerations. Technical advancements in microstructured electrodes and microfluidic MFC design are demonstrated. These developments open up possibilities for optimization and fundamental research into MFCs and related BES technology. Specifically, this work demonstrates improvements based on electrode structure and materials and their integration into gas-protected microfluidic channels featuring a membraneless configuration. The result is the most stable microfluidic MFC yet reported in the literature, capable of the longest operating times over the largest range of flow rates. We use this robust device design in study of the effect of flow to overcome the limitations of nutrient availability on power outputs, the so-called power overshoot problems and other obstacles to achieving wider impact of MFCs in the alternative energy sector.
2

Bacteria Energy Recovery System Using Natural Soil Bacteria in a Microbial Fuel Cells

Brochu, Nathaniel 31 January 2021 (has links)
No description available.
3

Caractérisation et optimisation des paramètres microbiens dans une pile bio-électrochimique fonctionnant au lisier de porc

Jeanne, Thomas 20 April 2018 (has links)
Dans un contexte de croissance de la productivité agricole, de réduction du coût des intrants, de valorisation des ressources et de cohabitation harmonieuse en milieu agri-urbain par une réduction des odeurs et des sources de pollution agroenvironnementales, il est primordial de développer des technologies agroenvironnementales de valorisation énergétique et de réduction de l'impact environnemental de l'industrie agricole. Les recherches sur les piles bio-électrochimiques connaissent un développement important ces dernières années. Les piles bio-électrochimiques produisent directement de l'électricité tout en traitant un effluent pour en réduire les nuisances environnementales contribuant ainsi à amener des solutions intéressantes à ces enjeux. Il reste cependant à accroître leurs performances afin de rendre cette technologie utilisable à grande échelle. Dans cette étude, nous avons pu identifier les populations microbiennes intervenant dans le processus électrique et ainsi pu définir des paramètres de fonctionnement permettant d'accroître notablement les performances électriques lorsque le lisier de porc est le substrat utilisé dans la pile. Ce succès, rencontré dans l'application du traitement et de la valorisation énergétique du lisier de porc, permet d'être grandement optimiste en vue d'une mise à l'échelle industrielle non seulement pour cette application, mais également pour d'autres effluents organiques.
4

Electrical valorization of MFC : application to monitoring / La récuperation d’énergie électrique de biopiles microbiennes pour l’application de monitoring

Pietrelli, Andrea 21 January 2019 (has links)
Dans les dernières années, l'utilisation intensive des combustibles fossiles a déclenché une crise mondiale due à la forte production de polluants et à la réduction des stocks, en raison de sa nature de source d'énergie non renouvelable. Parce que l'utilisation généralisée des combustibles fossiles a entraîné la production de grandes quantités de CO2, ce qui est un facteur aggravant du réchauffement de la planète. Les piles à combustible microbiennes (MFC) représentent une technique de récupération d'énergie qui convertit l'énergie chimique des composés organiques en énergie électrique par le biais de réactions catalytiques de micro-organismes. La MFC peut être considérée comme un archétypique de système microbien bioélectrochimique (BES), qui exploite l’activité bio-électrocatalytique de micro-organismes vivants pour la génération de courant électrique. Durant la dernière décennie, l’évolution de l’électronique de faible consommation a rendu la technologie des MFC plus attrayante, car elle commence à pouvoir fournir une énergie comparable à celle consommée par des périphériques dit à faible consommation, comme un nœud de réseau de capteurs sans fil (WSN). En plus, les MFC ont gagné en intérêt car elles peuvent générer de l'énergie électrique tout en traitant des déchets. Contrairement aux autres piles à combustible, les MFC peuvent générer en permanence une énergie propre à une température ambiante, à la pression atmosphérique et à un pH neutre, sans entretien supplémentaire. Les seuls sous-produits sont le CO2 et H2O, qui ne nécessitent aucune manipulation supplémentaire, car le CO2 produit est biogénique, ce qui est inclus dans le cycle du carbone biogéochimique, évitant l'émission nette de carbone dans l'atmosphère. Ce manuscrit examine certains aspects liés à la technologie des piles à combustible microbiennes, depuis les réactions chimiques jusqu’aux systèmes de gestion de l'énergie requis pour exploiter la puissance fournie par les MFC. Une campagne expérimentale a été menée sur les MFCs concernant la caractérisation électrique, la connexion multiple des MFCs et l’influence des principaux paramètres qui affectent les performances de conversion de l’énergie. Le contexte de la pile à biocarburant est introduit et les principes de base de fonctionnement et les applications principales sont expliqués. L'enquête comprend une évaluation de l'impact des différents matériaux d'électrode, du substrat utilisé et des bactéries impliquées dans le processus chimique. Une perspective consiste à ajuster les paramètres afin de maximiser la production d'électricité. La conception spécifique de nos MFC de laboratoire est également présentée. Les essais expérimentaux ont été effectués sur deux types de réacteurs : la pile à combustible microbienne terrestre et la pile à combustible microbienne à eau usée. Un système de mesure approprié est présenté, il est spécialement conçu pour les tests sur les MFC. Il est capable d'assurer une mesure précise de toutes les valeurs et paramètres électriques nécessaires à la caractérisation électrique des réacteurs dans une configuration unique ou dans une connexion multiple. Les solutions utilisées pour alimenter les WWMFC étaient différentes et dans certains cas, on utilisait de vraies eaux usées, alors que dans d'autres, des solutions synthétisées appropriées étaient conçues à cet effet. Les méthodes de synthèse des solutions sont décrites. L'influence des principaux paramètres tels que le pH et la température a été analysée pour les deux types de cellules. La campagne expérimentale comprend des mesures de réacteurs en configuration unique ou disposées dans des connexions en série ou en parallèle. Les résultats confirment l'augmentation de la tension dans le cas de connexions en série et l'augmentation de la puissance dans le cas de connexions en parallèle. [...] / In recent years, the extensive use of fossil fuels has triggered into a global crisis due to high pollution and stock reduction, because of its nature of non-renewable source of energy. Because the wide use of fossil fuels has led to the production of high amounts of CO2, as a result is a trigger of the global warming issue. Microbial fuel cells (MFCs) is an energy harvesting technique that converts chemical energy from organic compounds to electrical energy through catalytic actions of microorganisms. MFC can be considered as archetypical microbial Bioelectrochemical Systems (BESs), that exploit the bio-electrocatalytic activity of living microorganisms for the generation of electric current. In the past decade, the evolution of low power electronics has made MFCs technology more attractive, because it has begun to be able to power low-power devices forming complete systems, such as the nodes of a wireless sensor network (WSN). Moreover, MFCs gained more interest because they can generate electric power while treating wastes. Unlike other fuel cells, MFCs can continuously generate clean energy at normal temperature, atmospheric pressure, and neutral pH value without any supplementary maintenance. The only by-products are CO2 and H2O, which do not require additional handling. The production of CO2 is part of a short duration carbon cycle. The CO2 produced is biogenic, which is included in the biogeochemical carbon cycle, avoiding net carbon emission into atmosphere. This manuscript examines many aspects related to microbial fuel cell technology from chemical reactions inside the cells to the energy management systems required to exploit energy delivered from MFCs for practical usage in autonomous sensors. Experimental campaign was performed on MFCs regarding electrical characterization, multiple connections of MFCs and influence of main parameters that affect energy conversion performances. The experimental tests were performed on two different lab-scale reactor typologies: terrestrial microbial fuel cell and waste water microbial fuel cell. A survey is presented about different proposed energy management systems and other devices able to build a node of a WSN powered by MFCs.
5

Power Management for Microbial Fuel Cells

Nicolas, Degrenne 18 October 2012 (has links) (PDF)
Les Piles à Combustible Microbiennes (PCMs) mettent en oeuvre le métabolisme de micro-organismes et utilisent de la matière organique pour générer de l'énergie électrique. Les applications potentielles incluent le traitement d'eau usée autonome en énergie, les bio-batteries, et le grappillage d'énergie ambiante. Les PCMs sont des équipements basse-tension et basse-puissance dont le comportement est influencé par la vitesse à laquelle l'énergie électrique est récupérée. Dans cette thèse, on étudie des méthodes pour récupérer l'énergie électrique de façon efficace. La tension à laquelle l'énergie est récupérée des PCMs influence leur fonctionnement et leurs performances électriques. La puissance délivrée est maximum pour une tension spécifique (environ 1/3 de la tension en circuit-ouvert). Les PCMs ont été testées à ce point en utilisant une charge contrôlée automatiquement qui inclut un algorithme de recherche de puissance maximale. Un tel outil a été utilisé pour évaluer la puissance maximum, la vitesse de consommation du combustible, le rendement Coulombic et le rendement de conversion de 10 PCMs à chambre unique de 1.3 L, construites de façon similaire. Bien que d'autres choix structurels et opératoires peuvent permettre d'améliorer ces performances, ces résultats ont étudié pour la première fois les performances des PCMs en condition de production d'énergie de point de puissance maximal et les PCMs ont été testées avec des conditions de récupération d'énergie réalistes. Récupérer un maximum d'énergie des PCMs est la ligne directrice de ce rapport. Cela est rendu possible par des circuits dédiés de gestion de l'énergie qui embarquent un contrôle contre-réactif pour réguler la tension des PCMs à une valeur de référence qui est égale à une fraction de leur tension en circuit ouvert. Deux scénarios typiques sont développés dans la suite. Une application critique des PCMs concerne le grappillage autonome de petites énergies, pour alimenter des équipements électroniques basse-puissance (e.g. capteurs sans fil). Dans ce cas, les contraintes basse-puissance et basse-tension imposées par les PCMs nécessitent des fonctionnalités de démarrage autonomes. L'oscillateur d'Armstrong, composé d'inductances couplées à fort rapport d'enroulement et d'un interrupteur normalement-fermé permet d'élever des tensions de façon autonome à partir de sources basse-tension continues comme les PCMs. Ce circuit a été associé à des convertisseurs d'électronique de puissance AC/DC et DC/DC pour réaliser respectivement un élévateur-de-tension et une unité de gestion de l'énergie (UGE) auto-démarrante basée sur une architecture flyback. La première est adaptée pour les puissances inférieures à 1 mW, alors que la seconde peut être dimensionnée pour des niveaux de puissance de quelques mW et permet de mettre en oeuvre une commande qui recherche le point de puissance maximal du générateur. Une seconde application d'intérêt concerne le cas où de l'énergie est récupérée depuis plusieurs PCMs. L'association série peut être utilisée pour élever la tension de sortie mais elle peut avoir des conséquences négatives en terme de performances à cause des non-uniformités entre cellules. Cet aspect peut être résolu avec des circuits d'équilibrage de tension. Trois de ces circuits ont été analysés et évalués. Le circuit " complete disconnection " déconnecte une cellule défectueuse de l'association pour s'assurer qu'elle ne diminue pas le rendement global. Le circuit " switched-capacitor " transfère de l'énergie depuis les MFCs fortes vers les faibles pour équilibrer les tensions de toutes les cellules de l'association. Le circuit " switched-MFCs " connecte les PCMs en parallèle et en série de façon alternée. Chacune des trois méthodes peut être mise en oeuvre à bas prix et à haut rendement, la plus efficace étant la " switched-capacitor " qui permet de récupérer plus de 85 % de la puissance maximum idéale d'une association très largement non uniforme
6

Gestion de l'énergie des piles à combustible microbiennes / Power management for microbial fuel cells

Degrenne, Nicolas 18 October 2012 (has links)
Les Piles à Combustible Microbiennes (PCMs) mettent en œuvre le métabolisme de micro-organismes et utilisent de la matière organique pour générer de l’énergie électrique. Les applications potentielles incluent le traitement de l’eau autonome en énergie, les bio-batteries, et le grappillage d’énergie ambiante. Les PCMs sont des équipements basse-tension et basse-puissance dont le comportement est influencé par la vitesse à laquelle l’énergie électrique est récupérée. Dans cette thèse, on étudie des méthodes pour récupérer l’énergie électrique de façon efficace. La tension à laquelle l’énergie est récupérée des PCMs influence leur fonctionnement et leurs performances électriques. La puissance délivrée est maximum pour une tension spécifique (environ 1/3 de la tension en circuit-ouvert). Les PCMs peuvent être testées à ce point en utilisant une charge contrôlée automatiquement qui inclut un algorithme de recherche de puissance maximale. Un tel outil a été utilisé pour évaluer la puissance maximum, la vitesse de consommation du combustible, le rendement Coulombic et le rendement de conversion de 10 PCMs à chambre unique de 1.3 L construites de façon similaire. Bien que d’autres choix structurels et opératoires peuvent permettre d’améliorer ces performances, ces résultats ont étudié pour la première fois les performances des PCMs en condition de production d’énergie de point de puissance maximal et testé les PCMs avec des conditions de récupération d’énergie réalistes. Récupérer un maximum d’énergie des PCMs est la ligne directrice de ce rapport. C’est rendu possible par des circuits dédiés de gestion de l’énergie qui embarquent un contrôle contre-réactif pour réguler la tension des PCMs à une valeur de référence qui est égale à une fraction de leur tension en circuit ouvert. Deux scénarios typiques sont développés dans la suite. Une application critique des PCMs concerne le grappillage autonome de petites énergies, pour alimenter des équipements électroniques basse-puissance (e.g. capteurs sans fil). Dans ce cas, les contraintes basse-puissance et basse-tension imposées par les PCMs nécessitent des fonctionnalités de démarrage autonomes. L’oscillateur d’Armstrong, composé d’inductances couplées à fort rapport d’enroulement et d’un interrupteur normalement-fermé permet d’élever des tensions de façon autonome à partir de sources basse-tension continue comme les PCMs. Ce circuit a été associé à des convertisseurs d’électronique de puissance AC/DC et DC/DC pour réaliser respectivement un élévateur-de-tension et une unité de gestion de l’énergie (UGE) auto-démarrante basée sur une architecture flyback. La première est adaptée pour les puissances inférieures à 1mW, alors que la seconde peut être dimensionnée pour des niveaux de puissance de quelques mW et permet de mettre en œuvre une commande qui recherche le point de puissance maximale du générateur. Une seconde application d’intérêt concerne le cas où de l’énergie est récupérée depuis plusieurs PCMs. L’association série peut être utilisée pour élever la tension de sortie mais elle peut avoir des conséquences négatives en terme de performances à cause des non-uniformités entre cellules. Cet aspect peut être résolu avec des circuits d’équilibrage de tension. Trois de ces circuits ont été analysés et évalués. Le circuit “complete disconnection” déconnecte une cellule défectueuse de l’association pour s’assurer qu’elle ne diminue pas le rendement global. Le circuit “switched-capacitor” transfère de l’énergie depuis les MFCs fortes vers les faibles pour équilibrer les tensions de toutes les cellules de l’association. Le circuit “switched-MFCs” connecte les PCMs en parallèle et en série de façon alternée. Chacune des trois méthodes peut être mise en œuvre à bas prix et à haut rendement, la plus efficace étant la “switchedcapacitor”qui permet de récupérer plus de 85% de la puissance maximum idéale d’une association très largement non uniforme. / Microbial fuel cells (MFCs) harness the metabolism of micro-organisms and utilize organic matter to generate electrical energy. They are interesting because they accept a wide range of organic matter as a fuel. Potential applications include autonomous wastewater treatment, bio-batteries, and ambient energy scavenging. MFCs are low-voltage, low-power devices that are influenced by the rate at which electrical energy is harvested at their output. In this thesis, we study methods to harvest electrical energy efficiently. The voltage at which energy is harvested from MFCs influences their operation and electrical performance. The output power is maximum for a certain voltage value (approx. 1/3rd the open-circuit voltage). This noteworthy operating point is favorable in some applications where MFCs are used as a power supply. MFCs can be tested at this point using an automatic load adjuster which includes a maximum power point tracking algorithm. Such a tool was used to evaluate the maximum power, the fuel consumption rate, the Coulombic efficiency and the energy conversion efficiency of ten similarly built 1.3 L single-chamber MFCs. Although structural and operating condition choices will lead to improved performance, these results investigate for the first time the performance of MFCs in continuous maximum power point condition and characterize MFCs in realistic energy harvesting conditions. Harvesting energy at maximum power point is the main thread of the manuscript. This is made possible with dedicated energy processing circuits embedding control feedback to regulate the MFC voltage to a fraction of its open-circuit voltage. Two typical scenarios are developed as outlined below. One critical application concerns autonomous low-power energy scavenging, to supply remote low-power electronic devices (e.g. wireless sensors). In this case, the low-power and low-voltage constraints imposed by MFCs require dedicated self start-up features. The Armstrong oscillator, composed of high turn-ratio coupled inductors and of a normally-on switch, permits to autonomously step-up voltages from a low DC source like MFCs. Although the circuit requires few components, its operation is not trivial because it partly relies on the parasitic elements of the inductors and the switch. Proper sizing of the inductors enables an optimized operation. This circuit can be associated with power electronic AC/DCand DC/DC converters to realize a voltage-lifter and a fly back-based self-starting Power Management Unit (PMU) respectively. The former is suitable for powering levels below 1mW, while the latter can be scaled for power levels of a few units of mW and facilitates implementation of maximum power point control. A second application of interest concerns the case where energy is harvested from several MFCs.Serial association can be used to step-up voltage but may lead to detrimental consequences in terms of performances because of hydraulic couplings between MFCs sharing the same electrolyte (e.g. if the MFCs are running in continuous flow) or because of electrical non-uniformities between cells. Whereas the former issue can be addressed with galvanically insulated PMUs, the latter can be solved with voltagebalancing circuits. Three of these latter circuits were analyzed and evaluated. The “complete disconnection” circuit isolates a faulty cell from the configuration to ensure it does not impede the overall efficiency. The “switched-capacitor” circuit transfers energy from the strong to the weak MFCs to equilibrate the voltages of the individual cells in the stack. The “switched-MFC” circuit alternatively connects MFCs in parallel and in series. Each of the three methods can be implemented at low-cost and at high efficiency, the most efficient one being the “switched-capacitor”, that permits to harvest more that 85% of the ideal maximum energy of a strongly-non-uniform MFC association.
7

Gestion de l'Energie des Piles à Combustible Microbiennes

Degrenne, Nicolas 18 October 2012 (has links) (PDF)
Les Piles à Combustible Microbiennes (PCMs) mettent en oeuvre le métabolisme de micro-organismes et utilisent de la matière organique pour générer de l'énergie électrique. Les applications potentielles incluent le traitement d'eau usée autonome en énergie, les bio-batteries, et le grappillage d'énergie ambiante. Les PCMs sont des équipements basse-tension et basse-puissance dont le comportement est influencé par la vitesse à laquelle l'énergie électrique est récupérée. Dans cette thèse, on étudie des méthodes pour récupérer l'énergie électrique de façon efficace. La tension à laquelle l'énergie est récupérée des PCMs influence leur fonctionnement et leurs performances électriques. La puissance délivrée est maximum pour une tension spécifique (environ 1/3 de la tension en circuit-ouvert). Les PCMs ont été testées à ce point en utilisant une charge contrôlée automatiquement qui inclut un algorithme de recherche de puissance maximale. Un tel outil a été utilisé pour évaluer la puissance maximum, la vitesse de consommation du combustible, le rendement Coulombic et le rendement de conversion de 10 PCMs à chambre unique de 1.3 L, construites de façon similaire. Bien que d'autres choix structurels et opératoires peuvent permettre d'améliorer ces performances, ces résultats ont étudié pour la première fois les performances des PCMs en condition de production d'énergie de point de puissance maximal et les PCMs ont été testées avec des conditions de récupération d'énergie réalistes. Récupérer un maximum d'énergie des PCMs est la ligne directrice de ce rapport. Cela est rendu possible par des circuits dédiés de gestion de l'énergie qui embarquent un contrôle contre-réactif pour réguler la tension des PCMs à une valeur de référence qui est égale à une fraction de leur tension en circuit ouvert. Deux scénarios typiques sont développés dans la suite. Une application critique des PCMs concerne le grappillage autonome de petites énergies, pour alimenter des équipements électroniques basse-puissance (e.g. capteurs sans fil). Dans ce cas, les contraintes basse-puissance et basse-tension imposées par les PCMs nécessitent des fonctionnalités de démarrage autonomes. L'oscillateur d'Armstrong, composé d'inductances couplées à fort rapport d'enroulement et d'un interrupteur normalement-fermé permet d'élever des tensions de façon autonome à partir de sources basse-tension continues comme les PCMs. Ce circuit a été associé à des convertisseurs d'électronique de puissance AC/DC et DC/DC pour réaliser respectivement un élévateur-de-tension et une unité de gestion de l'énergie (UGE) auto-démarrante basée sur une architecture flyback. La première est adaptée pour les puissances inférieures à 1 mW, alors que la seconde peut être dimensionnée pour des niveaux de puissance de quelques mW et permet de mettre en oeuvre une commande qui recherche le point de puissance maximal du générateur. Une seconde application d'intérêt concerne le cas où de l'énergie est récupérée depuis plusieurs PCMs. L'association série peut être utilisée pour élever la tension de sortie mais elle peut avoir des conséquences négatives en terme de performances à cause des non-uniformités entre cellules. Cet aspect peut être résolu avec des circuits d'équilibrage de tension. Trois de ces circuits ont été analysés et évalués. Le circuit " complete disconnection " déconnecte une cellule défectueuse de l'association pour s'assurer qu'elle ne diminue pas le rendement global. Le circuit " switched-capacitor " transfère de l'énergie depuis les MFCs fortes vers les faibles pour équilibrer les tensions de toutes les cellules de l'association. Le circuit " switched-MFCs " connecte les PCMs en parallèle et en série de façon alternée. Chacune des trois méthodes peut être mise en oeuvre à bas prix et à haut rendement, la plus efficace étant la " switched-capacitor " qui permet de récupérer plus de 85 % de la puissance maximum idéale d'une association très largement non uniforme.

Page generated in 0.1075 seconds