• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 9
  • Tagged with
  • 27
  • 27
  • 23
  • 19
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de couches minces piézoélectriques flexibles pour la récupération d’énergie vibratoire / Study of flexible piezoelectric thin films for vibration energy harvesting

Dufay, Thibault 12 October 2017 (has links)
Le développement des capteurs autonomes et leurs applications dans les « smart-cities », nécessitent de nouvelles méthodes de production d’énergie, basées sur la récupération de l’énergie ambiante. Dans ce contexte, le projet N-air-J a pour objectif de réaliser des microgénérateurs,basés sur des films piézoélectriques flexibles, capables de récupérer l’énergie des courants d’airs. Les travaux réalisés dans cette thèse concernent la réalisation des couches minces piézoélectriques de zircono-titanate de plomb (PZT) déposées sur une feuille d’aluminium, ainsi que les caractérisations structurales, diélectriques, ferroélectriques, et piézoélectriques associées. L’optimisation du générateur est basée sur un procédé de transfert original du PZT depuis l’aluminium vers un substrat polymère. L’intérêt du transfert vers un substrat souple et isolant est de pouvoir réaliser une configuration d’électrodes interdigitées (IDE). Les propriétés de récupération d’énergie des deux configurations PZT/Al et PZT/polymère ont été testées, et la densité d’énergie produite est similaire à l’état de l’art pour des structures plus rigides. L’utilisation d’électrodes IDE a prouvé son intérêt par la génération d’une tension de sortie de plusieurs dizaines de volt. Un modèle analytique a été développé afin d’étudier le comportement de la poutre piézoélectrique utilisée dans ces travaux. Les études expérimentales ont permis de quantifier l’influence des frottements de l’air sur le comportement vibratoire de la poutre. La simulation de l’interaction fluide structure a montré la possibilité d’augmenter les déformations de plusieurs brins au sein d’un réseau de générateurs. / New methods for energy generation based on the ambient energy harvesting are required for autonomous sensors development and their applications in the “smartcities”. In this context, N-air-J project aims to realize micro-generators based on flexible piezoelectric films, able to harvest energy from the breeze. The work presented in this thesis is about the deposition of lead zirconate titanate (PZT) thin layer on aluminium thin foil. Structural, dielectric, ferroelectric and piezoelectric characterizations were realized. The generator optimization is focused on the PZT transfer from aluminium to polymer substrate. The technological process has been developed for the transfer. The use of an insulating and elastic substrate is very interesting for the realization of an interdigitated (IDE) electrode configuration. Energy harvesting properties of the two configurations, PZT/Al and PZT/polymer, were tested. Energy densities were found similar to those of more rigid structures presented in the literature. The use of the IDE confirms its great interest by delivering a voltage of several tens of volts.An analytical model was developed to study the behaviour of the piezoelectric beam used in this work. Experimental studies quantify the influence of air friction on the beam vibratory behaviour. Fluid-structure interaction simulation has demonstrated the possibility for improving the deformations of several beams in a generators network.
2

Développement d'un système d'alimentation d'un noeud de capteur sans fils à partir d'un récupérateur piézoélectrique pour des applications dans l'automobile

Sridi, Mohamed January 2015 (has links)
Le développement intensif de l’électronique à très faible consommation énergétique et des technologies de communication sans fils ont permis l’apparition des nœuds de capteur sans fils dans plusieurs domaines. Un nœud de capteur sans fils devrait être un système autonome. Néanmoins, les batteries sont utilisés jusqu’à aujourd’hui pour son alimentation. L’utilisation des batteries comme source d’énergie présente des défis majeurs tels que le coût de remplacement et d’entretien. L’objectif de ce projet est de valider la possibilité d’alimentation d’un nœud de capteur sans fils à partir de l’énergie vibratoire à travers un récupérateur piézoélectrique. Un système d’alimentation complet d’un nœud de capteur sans fils contient le transducteur piézoélectrique, une unité de gestion de puissance et un élément de stockage. Ce mémoire de maîtrise présente les travaux élaborés dans le but de définir une configuration bien adaptée d’un système d’alimentation autonome complet. La réalisation de ce projet a nécessité le développement d’un démonstrateur expérimental du système en se basant sur des composants commerciaux. Ce démonstrateur a permis de valider la faisabilité du système de récupération d’énergie vibratoire pour des excitations qui peuvent exister dans le domaine de l’automobile en termes de fréquence de résonance et amplitudes d’accélération. Tout d’abord, les besoins énergétiques du nœud de capteur à alimenter et du circuit de gestion de puissance sélectionné ont été caractérisés expérimentalement en établissant une communication entre le nœud et une station de base. À partir de ces résultats, le transducteur piézoélectrique et l’élément de stockage adéquats ont été déterminés. Dans notre cas, le transducteur piézoélectrique choisi est soumis à une excitation harmonique d’amplitude 0.3 g et de fréquence de 65.8 Hz. Il alimentait le nœud de capteur sans fils développé opérant à une période de transmission de 17s à travers le circuit de gestion de puissance de faibles pertes favorisant le transfert optimal d’énergie entre l’entrée et la sortie du système. La fonctionnalité du système a été mise en évidence et une méthodologie comportant les différentes considérations à tenir en compte lors de développement de ce type de système a été proposée. Il est démontré que l’étude énergétique du système est un atout pour son développement. En effet, le design du transducteur piézoélectrique doit être fait de telle façon que la puissance générée par le récupérateur piézoélectrique soit supérieure à la puissance requise par le reste du système. Pour cela, la source de vibration doit être caractérisée en termes de fréquence et amplitude d’accélération. La puissance totale requise par le nœud de capteur et le circuit de gestion de puissance doit être déterminée. Le dimensionnent de l’élément de stockage doit aussi tenir compte de l’énergie totale requise par la charge.
3

Electromechanical study of semiconductor piezoelectric nanowires. Application to mechanical sensors and energy harvesters / Etude électromécanique de nanofils piézoélectriques semi conducteurs. Application aux capteurs et recuperateurs d’énergie mecaniques

Hinchet, Ronan 04 April 2014 (has links)
Les systèmes intelligents sont le résultat combiné de différentes avancées en microélectronique et en particulier de l’augmentation des puissances de calcul, la diminution des consommations d’énergie, l'ajout de nouvelles fonctionnalités et de moyens de communication et en particulier à son intégration et application dans notre vie quotidienne. L'évolution du domaine des systèmes intelligents est prometteuse, et les attentes sont élevées dans de nombreux domaines : pour la surveillance dans l'industrie, les transports, les infrastructures et l'environnement, ainsi que dans le logement, l'électronique grand public et les services de soins de santé, mais aussi dans les applications pour la défense et l’aérospatial. Aujourd’hui, l'intégration de plus en plus de fonctions dans les systèmes intelligents les conduisent vers un problème énergétique où l'autonomie devient le principal problème. Par conséquent, il existe un besoin croissant en capteurs autonomes et sources d'alimentation. Le développement de dispositifs de récupération d’énergie et de capteurs autoalimentés est une façon de répondre à ce problème énergétique. Parmi les technologies étudiées, la piézoélectricité a l'avantage d'être compatible avec l'industrie des MEMS. De plus elle génère des tensions élevées et elle possède un fort couplage direct entre les physiques mécaniques et électriques. Parmi les matériaux piézoélectriques, les nanofils (NFs) semi-conducteurs piézoélectriques pourraient être une option prometteuse car ils présentent des propriétés piézoélectriques plus importantes et une plus grande gamme de flexion.Parmi les différents NFs piézoélectriques, les NFs de ZnO et de GaN sont les plus étudiés. A l'échelle nanométrique leurs propriétés piézoélectriques sont plus que doublées. Ils ont l'avantage d'être compatible avec l’industrie microélectronique et raisonnablement synthétisable par des approches top-down et bottom-up. En particulier, nous avons étudié la croissance par voie chimique de NFs de ZnO. Pour les utiliser correctement, nous avons étudié le comportement des NFs de ZnO. Nous avons effectué une étude analytique et des simulations par éléments finis (FEM) d'un NF de ZnO en flexion. Ces études décrivent la distribution du potentiel piézoélectrique en fonction de la force et permettent d’établir les règles d'échelle et de dimensionnement. Ensuite, nous avons développé la caractérisation mécanique par AFM du module de Young de NFs de ZnO et de GaN, puis nous avons effectué des caractérisations piézoélectriques par AFM de ces NFs pour vérifier leur comportement sous des contraintes mécaniques de type flexion. Une fois leur comportement physique compris, nous discutons des limites de notre modèle de NFs piézoélectriques en flexion et nous développons un modèle plus réaliste et plus proche des configurations expérimentales. En utilisant ce nouveau modèle, nous avons évalué le potentiel des NFs de ZnO pour les capteurs de force et de déplacement en mesurant le potentiel généré sous une contrainte, puis, sur la base d’expériences, nous avons évalué l'utilisation de NFs de GaN pour les capteurs de force en mesurant le courant au travers des NFs contraints. De même, nous avons évalué le potentiel de ces NFs pour les applications de récupération d'énergie liées aux capteurs autonomes. Pour bien comprendre la problématique, nous avons étudié l’état de l’art des nano générateurs (NG) et leurs architectures potentielles. Nous analysons leurs avantages et inconvénients, afin de définir une structure de NG de référence. Après une brève étude analytique de cette structure pour comprendre son fonctionnement et les défis, nous avons effectué plusieurs simulations FEM pour définir des voies d'optimisation pour les NG utilisé en mode de compression ou de flexion. Enfin la fabrication de prototypes et leurs caractérisations préliminaires sont présentées. / Smart systems are the combined result of different advances in microelectronics leading to an increase in computing power, lower energy consumption, the addition of new features, means of communication and especially its integration and application into our daily lives. The evolution of the field of smart systems is promising, and the expectations are high in many fields: Industry, transport, infrastructure and environment monitoring as well as housing, consumer electronics, health care services but also defense and space applications. Nowadays, the integration of more and more functions in smart systems is leading to a looming energy issue where the autonomy of such smart systems is beginning to be the main issue. Therefore there is a growing need for autonomous sensors and power sources. Developing energy harvesters and self-powered sensors is one way to address this energy issue. Among the technologies studied, piezoelectricity has the advantage to be compatible with the MEMS industry, it generates high voltages and it has a high direct coupling between the mechanic and electric physics. Among the piezoelectric materials, semiconductor piezoelectric nanowires (NWs) could be a promising option as they exhibit improved piezoelectric properties and higher maximum flexion.Among the different piezoelectric NWs, ZnO and GaN NWs are the most studied, their piezoelectric properties are more than doubled at the nanoscale. They have the advantage of being IC compatible and reasonably synthesizable by top-down and bottom-up approaches. Especially we studied the hydrothermal growth of ZnO NWs. In order to use them we studied the behavior of ZnO NWs. We performed analytical study and FEM simulations of a ZnO NW under bending. This study explains the piezoelectric potential distribution as a function of the force and is used to extract the scaling rules. We have also developed mechanical AFM characterization of the young modulus of ZnO and GaN NWs. Following we perform piezoelectric AFM characterization of these NWs, verifying the behavior under bending stresses. Once physics understood, we discuss limitation of our piezoelectric NWs models and a more realistic model is developed, closer to the experimental configurations. Using this model we evaluated the use of ZnO NW for force and displacement sensors by measuring the potential generated, and from experiments, the use of GaN NW for force sensor by measuring the current through the NW. But energy harvesting is also necessary to address the energy issue and we deeper investigate this solution. To fully understand the problematic we study the state of the art of nanogenerator (NG) and their potential architectures. We analyze their advantages and disadvantages in order to define a reference NG structure. After analytical study of this structure giving the basis for a deeper understanding of its operation and challenges, FEM simulations are used to define optimization routes for a NG working in compression or in bending. The fabrication of prototypes and theirs preliminary characterization is finally presented.
4

Système distribué actif sans fil basse consommation pour l'amortissement des vibrations

Zielinski, Mateusz 14 October 2015 (has links)
Depuis des siècles nous utilisons des véhicules équipés des systèmes de suspension de vibrations. Ils permettent d'avoir un confort acceptable et ajoutent de la sécurité à la conduite. Les nouveaux systèmes installés dans les véhicules sont des systèmes actifs. Ils peuvent être adaptés selon les exigences en temps réel. Ces types de systèmes sont utilisés pour l'amortissement de vibrations et pour l’isolation vibro-acoustique. Dans la thèse nous présentons une nouvelle approche d'un système adaptatif pour les applications automobiles. Nous faisons l'hypothèse qu’un portage d'un système centralisé en système distribué peut améliorer son efficacité. Nous proposons un réseau de capteurs sans fil pour l’amortissement de vibrations dans les applications automobiles. Un capteur du réseau est capable de mesurer des vibrations, d’amortir des vibrations et de récupérer l’énergie depuis les vibrations en utilisant un seul élément piézoélectrique (la méthode Serial-SSHI). Ensuite nous validons le réseau de capteurs sur une structure mécanique de type plaque. Les mesures sont comparées avec des simulations d’éléments finis. Les résultats des mesures et des simulations confirment le choix des solutions. Le nœud du réseau fournit ses fonctionnalités destinées avec une efficacité acceptable. Nous validons la récupération d’énergie depuis les vibrations et la mesure des vibrations. Ensuite nous validons un effet local d’amortissement de vibrations et un effet global (le réseau de capteurs permet d’avoir une action d’amortissement complémentaire). / For centuries we have used vehicles equipped with the vibration suspension systems. These systems are used to provide comfort and safety. Nowadays we are implementing the active systems which can be adapted according to the real-time requirements. These types of systems are used to damp vibrations and to provide noise and vibration insulation. In the thesis we present a new approach of an adaptive system for automotive applications. We assume that a porting of a centralized system in a distributed system can improve its effectiveness. We offer a wireless sensor network for damping vibration in automotive applications. A network sensor is able to measure the vibrations, damp the vibrations and energy harvesting from vibrations by using a single piezoelectric element (Serial-SSHI method). We validate the network of nodes on a mechanical structure. The measurements are compared with finite element simulations. The results of measurements and simulations confirm the choice of solutions. The network node provides designed functionality with acceptable efficiency. We also validate the energy harvesting and the vibration measurements. The outcome of the work confirm a local effect of vibrations damping and a global effect (the designed Wireless Sensor Network provides a supplementary damping action).
5

Développement et caractérisation d’un démonstrateur de générateur thermoélectrique à base de membranes de silicium couplées à de l’ingénierie phononique / Development and characterization of a thermoelectric harvester demonstrator using phonon engineered silicon membranes

Bah, Thierno Moussa 03 July 2019 (has links)
L'essor de l'internet des objets (IoT) et des capteurs autonomes et communicants semble être retardé en raison du manque de source d’énergie fiable, sûre et à faible coût. Les récupérateurs d’énergies thermoélectriques présentent ces avantages clés. Le silicium présente les avantages d'être très abondant, moins polluant et de bénéficier d'installations et de procédés technologiques permettant la production en série de récupérateurs d’énergies thermoélectriques à faible coût par rapport aux matériaux conventionnel (alliages de tellure de bismuth). Toutefois, le silicium est un matériau thermoélectrique médiocre en raison de sa conductivité thermique élevée ( ). La possibilité de réduire la conductivité thermique tout en préservant la conductivité électrique et le coefficient Seebeck est la clé pour améliorer le silicium en tant que matériau thermoélectrique efficace. À cette fin, les efforts sont orientés vers la partie phononique du transport de chaleur, qui constitue la contribution dominante dans les semi-conducteurs. Les recherches menées au cours de cette thèse ont porté sur l'intégration des membranes de silicium nanostructurées de réseaux phononiques dans des démonstrateurs de récupérateurs d’énergies thermoélectriques et leur caractérisation au regard de l'état de l’art. Les résultats de ces études ont démontré la faisabilité d’un récupérateur d’énergie thermoélectrique à base de silicium présentant des performances (De quelques µW/cm2 pour ΔT~5-10K à quelques mW/cm2 pour ΔT>100K) suffisantes pour l’alimentation en énergie de nœuds de capteurs autonomes et des performances comparables à celles d’un récupérateur (état de l’art) à base de tellure de bismuth en fonction des conditions de refroidissement de ces derniers. De plus, cette thèse a démontré, outre la récupération d'énergie, la possibilité de développer des refroidisseurs thermoélectriques à base de silicium, ouvrant la voie à une possible intégration de refroidisseurs thermoélectriques dans des dispositifs micro-électroniques à base de silicium. / The lack of reliable, safe and low-cost energy source seems to delay the blooming of the internet of things (IoT) and wireless sensors nodes. Thermoelectric harvesters feature those key advantages. Silicon presents the advantages to be most abundant, less environmental harmful and to benefit from facilities and technological processes for low cost thermoelectric harvesters mass production compared to the conventional materials (bismuth telluride alloys). However, silicon is a poor thermoelectric material due to its high thermal conductivity ( ). The possibility to reduce the thermal conductivity while preserving electrical conductivity and Seebeck coefficient is the key to upgrade silicon as an efficient thermoelectric material. To that end, efforts are oriented towards the phononic part of heat transport, which is the dominant contribution in semiconductors. The researches carried out during this thesis dealt with the integration of phonon engineered silicon membranes into thermoelectric harvester demonstrators and their characterizations with respect to the state of the art. The results demonstrated the feasibility of a silicon based thermoelectric harvester exhibiting performance (from few µW/cm2 for ΔT~5-10K to few mW/cm2 for ΔT>100K) sufficient for autonomous sensor nodes’ power supplying and comparable performance with the bismuth telluride state of the art harvester according to the harvesters’ cooling conditions. Moreover, this thesis demonstrated, in addition to the energy harvesting, the possibility of developing silicon based thermoelectric coolers, opening the way to possible integration of thermoelectric coolers in silicon based micro-electronic devices.
6

Contribution à la conception de générateurs électroactifs souples / Contribution to the conception of soft dielectric elastomer generators

Vu, Cong Thanh 01 October 2013 (has links)
Récupérer l'énergie mécanique ambiante est une alternative prometteuse afin d'assurer l'autonomie énergétique d'appareils nomades. Le développement des générateurs électrostatiques souples reste toutefois à ce jour anecdotique du fait des hautes tensions de polarisation employées, de la nécessité de grandes déformations mécaniques mais aussi de l'utilisation de matériaux peu conventionnels et mal caractérisés. Le but de cette thèse est d'apporter des avancées scientifiques et des solutions aux verrous technologiques précités. Tout d'abord, une caractérisation rigoureuse des propriétés électriques et mécaniques de deux matériaux communément utilisés pour ces applications (acrylate VHB 4910 et silicone Polypower) nous a donné accès aux propriétés physiques dans un fonctionnement réel de ces polymères : influence de la précontrainte, de la nature des électrodes... Ces données ont permis d'élaborer des lois analytiques fiables que nous avons ensuite insérées dans un modèle thermodynamique permettant de définir avec précision les puissances et densités d'énergie récupérables pour ces générateurs. Des pistes d'amélioration des matériaux utilisés dans les applications générateurs peuvent être dégagées de notre modèle. Le second verrou à lever concerne la source haute tension de polarisation nécessaire à ces générateurs électrostatiques. Pour cela, nous avons proposé une solution innovante couplant l'élastomère diélectrique à un électret. Différentes configurations de générateurs hybrides dans des géométries 2D et 3D ont été évaluées. Enfin, nous avons réalisé un prototype qui a délivré une puissance de l'ordre de 35µW sachant qu'une optimisation de ce prototype est réalisable et que des puissances récupérées de plusieurs centaines de µW sont tout à fait réalistes. / Scavenging mechanical ambient energy is a promising solution to ensure the autonomy of wearable transducers. Nevertheless, the development of soft electrostatic generator (DEG) is up to now slow down due to the use of high bias voltage, high strain and innovative mischaracterized materials. The aim of this Ph-D thesis is to propose innovative solutions to these technological barriers. Firstly, a complete characterization of the electrical and mechanical properties of two commonly used dielectric polymer (acrylate VHB 4910 and silicone Polypower) has revealed the true physical properties of these polymers and especially the influence of the pre-stress and the nature of the electrode used. Thanks to these data, reliable analytic laws have been proposed and inserted into our thermodynamic model in order to predict the output power and scavenged energy density for the DEG. Moreover, our model allow us to propose improvements for the materials used in these applications. The second challenge is to propose an alternative to the high bias voltage needed for these soft generators. We have proposed an innovative solution combining an electret and a dielectric elastomer. Various configurations of hybrid generators in 2D or 3D geometry have been modelled and evaluated. Finally, a prototype has been designed allowing scavenging 35µW. With an appropriate optimization of our prototype, hundreds of µW can be scavenged.
7

Développement de systèmes de récupération d’énergie thermique / Development of thermal energy harvesting systems

Salamon, Natalia 24 January 2018 (has links)
L’objectif du présent travail a été de concevoir et de fabriquer des dispositifs sur silicium pour convertir de l’énergie thermique en une énergie électrique en utilisant le changement de phase liquide-gaz dans le but de générer une variation subite de pression suivie d’une conversion d’énergie mécanique vers une énergie électrique à l’aide d’un piézoélectrique. La construction des dispositifs a dû rester simple, avec des matériaux courants et en respectant des limites dimensionnelles. Empreinte inférieure à un diamètre de 20 mm et une épaisseur en dessous des 2 mm.Les prototypes fabriqués sont composés de 3 plaques en silicium, contenant une chambre d’évaporation, une chambre de condensation et un canal réunissant les deux. Un transducteur piézoélectrique a été reporté sur la chambre de condensation et assure l’étanchéité ainsi que la génération d’énergie électrique.Le processus de conception inclut plusieurs étapes, dont la définition de la géométrie et du type de fluide de travail utilisé en tant qu’agent thermique. Le travail effectué a permis de sélectionner le type de piézoélectrique, sa taille ainsi que sa méthode d’intégration. Une étude a également été conduite pour déterminer la méthode optimale d’assemblage des plaques en silicium.La réalisation pratique des dispositifs a été orientée vers la sélection des meilleurs procédés technologiques pour la fabrication des structures. Toutes les expériences ont été conduites en salle blanche avec utilisation de l’oxydation humide, la photolithographie, la gravure KOH, ainsi que d’une technique d’assemblage des plaques silicium avec utilisation de la résine SU-8 comme couche intermédiaire. En plus, quelques outils spécifiques ont été conçus lors du présent travail, pour faciliter la fabrication des dispositifs, dont un système sous vide dédié à l’assemblage des plaques en silicium.Les dispositifs ont été testés afin d’établir leur mécanisme d’oscillation thermique ainsi que leurs propriétés électriques. L’influence tu taux de remplissage et de la température de surface chaude sur le signal en sortie ont également été étudiées. Le calcul de l’énergie générée a aussi été effectué. Dans la dernière partie de l’étude, des étapes d’optimisation pour les dispositifs développés dans le présent travail sont proposées. / The goal of the present work was to design and fabricate a fully silicon oscillating device that converts thermal energy into electricity, applying phenomena of liquid to gas phase-change and piezoelectricity. It should be characterized by simplicity of construction, small size, and ease of manufacture. The diameter should not exceed 2 cm, while the thickness should be within 2 mm.The device was composed of three Si wafers comprising evaporation and condensing chambers, and the channel connecting these two elements. A PZT-based transducer mounted on top of the structure was applied to ensure energy conversion.The design process included the establishment of the device geometry, the type of the working fluid enclosed inside the system, a type, size and assembly technique of a piezoelectric element, as well as a bonding method of several silicon elements of the device.The practical realization of the designed prototypes was aimed at selecting the most suitable technological processes for structure fabrication. All the experiments had been performed in a clean room environment and employed wet oxidation, photolithography, a well-known, easily available wet chemical etching in KOH solution, and a silicon bonding technique with the use of SU-8 photoresist as an intermediate layer. Additionally, during the practical work a few tools have been designed and developed to enhance the device fabrication, amongst which a vacuum pump dedicated to bond the three silicon wafers as structural elements of the prototypesThe fabricated prototypes were tested in terms of oscillation mechanism and electrical properties. The influence of the filling ratio and the hot temperature value on the generated signal was established. Additionally, the power range of the prototypes has been evaluated. In the last part of the study, optimization steps for the devices developed in the present work have been proposed.
8

Matériaux sans plomb micro structurés pour la récupération d'énergie / Lead-free microstructured materials for energy harvesting

Wague, Baba 30 January 2018 (has links)
Avec le développement des circuits intégrés à très faible consommation d'énergie, la nécessité de réduire les coûts d'exploitation des dispositifs électroniques embarqués et l'utilisation des piles usagées constituant une menace pour l'environnement, le concept de récupération d'énergie a acquis un nouvel intérêt. La récupération d'énergie couvre le piégeage de nombreuses sources d'énergie ambiantes perdues et leur conversion en énergie électrique. Une large gamme de dispositifs de récupération d'énergie des vibrations mécaniques a été développée. Une configuration commune consiste en un système de masse-ressort avec un matériau piézoélectrique en parallèle avec le ressort pour convertir une partie de l'énergie mécanique pendant les oscillations en énergie électrique. Jusqu'à présent, le matériau le plus utilisé pour la récupération d'énergie piézoélectrique est le titano-zirconate de plomb (PbZr1-xTixO3) (PZT). Le PZT est le matériau de référence pour les applications microsystème électromécanique-MEMS (MechanoElectroMechanicalSystems) dans le domaine de la récupération d'énergie. Les matériaux piézoélectriques à base de plomb tels que le PZT et niobate-titanate de plomb-magnésium (PMN-PT) offrent des facteurs de couplage piézoélectriques supérieurs à ceux d'autres matériaux. Cependant, malgré ses excellentes propriétés électriques (diélectriques, ferroélectriques et piézoélectriques), le PZT et d'autres matériaux à base de plomb devraient bientôt être remplacés par des composés sans plomb, à cause des problèmes environnementaux. Notre travail vise à développer des matériaux sans plomb de haute performance pour la récupération d'énergie par vibration mécanique. Nous nous sommes intéressés à la fabrication et la caractérisation des dispositifs MEMS pour la récupération d'énergie en utilisant les matériaux piézoélectriques sans plomb tels que le nitrure d'aluminium (AIN), le titanate de baryum BaTiO3 (BTO) et la ferrite de bismuth BiFeO3 (BFO). Les matériaux piézoélectriques PZT (utilisé comme référence à cause ses coefficients piézoélectriques élevés), BTO, BFO et AIN ont été déposés en utilisant des méthodes de dépôt telles que la pulvérisation cathodique et le dépôt sol-gel, conduisant à des films minces à grande échelle, homogènes et de haute densité, avec une épaisseur contrôlée avec précision. Le dépôt de films de 300 nm d'épaisseur par pulvérisation cathodique ou par Sol-Gel a été réalisé sur du substrat de SrTiO3 (STO) recouvert d'une électrode inférieure de SrRuO3 (SRO), qui est le substrat de référence pour les oxydes fonctionnels (PZT, BTO et BFO), et sur un substrat de silicium recouvert de platine, qui est le modèle industriel classique. Quels que soient les matériaux piézoélectriques, nous avons obtenu des films épitaxiés sur substrat de STO et texturés sur substrat de silicium. Des mesures structurales, électriques et piézoélectriques sur les films de BTO, AIN et PZT montrent qu'ils ont de bonnes propriétés physiques en accord avec la littérature. / With the development of ultra-low-power integrated circuits, the need to reduce operating costs for embedded electronic devices, and since used batteries pose a threat to the environment, the concept of energy harvesting has gained a new relevance. Energy harvesting covers the scavenging of many lost ambient energy sources and their conversion into electrical energy. A broad range of energy harvesting devices has been developed to scavenge energy from mechanical vibrations. A common configuration consists of a spring-mass system with a piezoelectric material in parallel with the spring to convert some of the mechanical energy during oscillations into electrical power. So far the most used material for piezoelectric energy harvesting is the Lead Zirconate Titanate (PbZr1-xTixO3) (PZT). PZT is the reference material for MEMS (MechanoElectroMechanicalSystems) applications in the field of energy harvesting. Lead-based piezoelectric materials such as PZT and lead magnesium niobate-lead titanate (PMN-PT) offer incomparable piezoelectric coupling factors to other materials. However, despite its excellent electrical properties (dielectric, ferroelectric and piezoelectric), PZT and other Lead based materials should be replaced shortly by leadfree compounds, due to environmental issues. Our work aims at developing lead-free high performance vibration energy-harvesting. We focus on the fabrication and characterization of aluminum nitride (AlN), Barium titanate BaTiO3 (BTO) and Bismuth ferrite BiFeO3 (BFO) devices for energy harvesting. PZT (as a reference because it’s high piezoelectric coefficients), BTO, BFO and AlN have been deposited using sputtering methods, leading to high homogeneous, large scale thin films with a precisely controlled thickness. The deposition of 300nm-thick films by sputtering or spin coating was performed on SrTiO3 (STO) substrate with SrRuO3 (SRO) bottom electrode, which is the reference substrate for the functional oxides (PZT, BTO and BFO), and platinum coated silicon substrate, which is the classic industrial template. Whatever the piezoelectric materials, we obtained epitaxial films on STO substrate and textured films on silicon substrate. Structural, electrical and piezoelectric measurements on the BTO, AlN and PZT films show that they have good physical properties in agreement with the literature.
9

Valorisation du traitement d'eaux usées à partir de piles à combustibles microbiennes benthiques. / Valorization of wastewater treatment from benthic microbial fuel cells

Hourizadeh, Nicolas 15 December 2015 (has links)
Ce travail s’oriente vers la valorisation du traitement d’eaux usées à partir de piles à combustibles microbiennes (PCM) benthiques pour la production d’électricité. Cette technologie permet la production d’électricité à partir de micro-organismes électro-actifs (EA) et d’un substrat carboné qui peut être de l’eau usée.Quatre types d’eaux usées issues de l’activité anthropique sont sélectionnés. La présence de micro-organismes EA est mise en évidence par 2 méthodes électrochimiques. En condition réelle, le milieu lagunaire présente les meilleures performances électriques (6,6 mW/m²). Celui-ci propose l’environnement le plus favorable à l’installation dePCM benthiques in-situ. Les résultats montrent une forte influence des micro-algues sur l’activité des biofilms EA. Avec un cycle jour/nuit, cette production varie en suivant les cycles d’éclairage. Les micro-algues apportent l’oxygène nécessaire aux réactions cathodiques. Les PCM améliorent également la consommation de polluants du milieu cathodique.L’alimentation de petits dispositifs tels que des capteurs passe obligatoirement par une augmentation de la tension délivrée par les biopiles. Différentes techniques d’élévation de la tension (mise en série et en parallèle de plusieurs piles, convertisseurs DC/DC) sont analysées. Un capteur de température et d’humidité a fonctionné durant plus de 15 h directement alimenté par une de nos biopiles benthiques avec une puissance de 328 µW. Sa tension de sortie est augmentée par un convertisseur de type Flyback, passant de 560 mV à plus de 5,5 V. L’utilisation de PCM in-situ dans la lagune peut constituer une alternative à la production électrique et au traitement des eaux usées. / The work described in this document is oriented to enhancing the treatment of wastewater from benthic microbial fuel cell (BMFC) for electricity production. This technology allows the production of electricity from electro-active (EA) microorganisms and carbonated substrate which may be the wastewater.Four types of wastewater from human activity are selected. The presence of EA microorganisms is highlighted by two electrochemical methods. In real conditions, the lagoon environment has the best electrical performance (6.6 mW/m²).The lagoon environment offers the most favorable environment for installation BMFC in-situ. The results show a strong influence of microalgae on the EA biofilms activities and thus on the production of electricity. In lagoon conditions, with a day/night cycle, this production varies according to the lighting cycles. Microalgae bring oxygen necessary for cathode reactions at lower cost. BMFC also improve the consumption of pollutants including organics.Electrical supply by small devices such as sensors necessarily requires an increase of the voltage delivered by BMFC. The different voltage boosting techniques such as series and parallel connections of several units or the use of DC/DC converters are performed and analyzed. A temperature and humidity sensor worked for more than fifteen hours directly powered by a BMFC with a power of 328 µW. Its output voltage is increased by a flyback type DC/DC converter, from 560 mV to more than 5.5 V. The use of PCM in-situ in the lagoon can be an alternative to the power generation and the treatment of wastewater.
10

Capteur acoustique sphérique autonome : étude du dispositif de récupération d'énergie vibratoire / Autonomous spherical acoustic sensor : study of the vibratory energy harvesting device

Diab, Daher 07 December 2017 (has links)
Un nouveau capteur acoustique sphérique autonome est proposé. Il est destiné à être immergé dans un milieu liquide ou pâteux pour mesurer certaines propriétés physiques du milieu et récupérer l'énergie vibratoire ambiante pour assurer son autonomie. Le capteur est composé de deux coquilles hémisphériques en plexiglas et d'une bague piézoélectrique en PZ26 fixée entre les deux coquilles. Cette structure peut être utilisée aussi bien en excitateur que capteur. Un modèle de simulation de la récupération d'énergie vibratoire a été développé en considérant seulement deux modes de vibration: mode épaisseur et mode radial. Pour chaque mode, le comportement de l’anneau est décrit par un circuit électromécanique équivalent reliant les ports mécaniques (forces et vitesses) au port électrique (tension et courant). Ce choix est guidé par la possibilité de combiner la partie électromécanique avec l'électronique qui traite l'énergie directement dans un simulateur basé sur Spice. Pour valider cette approche, une simulation par éléments finis a été réalisée et comparée aux résultats produits par le circuit électromécanique. Les fréquences de résonance ont également été vérifiées expérimentalement avec un analyseur d'impédance. Toutes ces vérifications donnent des résultats en très bon accord avec le modèle électromécanique proposé en termes de fréquences de résonance, de tension et de puissance collectées. Enfin, plusieurs validations expérimentales sont présentées avec un prototype de capteur sphérique. Ces validations montrent l’adéquation des prédictions avec les résultats expérimentaux. Finalement, un test du circuit de récupération est effectué en situation réelle. / A new spherical autonomous acoustic sensor is proposed. It is intended to be immersed in a liquid or pasty medium to measure some physical properties of the medium and should harvest ambient energy to ensure its autonomy. The sensor is composed of two Plexiglas half-spherical shells and a PZ26 piezoelectric ring clamped between the two shells. This structure can be used as well as in exciter or sensor. A simulation model of vibrational energy harvesting has been developed considering only two modes of vibration: thickness and radial modes. For each mode, the ring behavior is described by an equivalent electromechanical circuit connecting the mechanical ports (forces and velocities) to the electrical port (voltage and current). This choice is guided by the possibility to combine the electromechanical part with the electronics that process the energy directly in a Spice based simulator. To validate this approach, a finite elements simulation was realized and compared to the electromechanical circuit results. Resonance frequencies were also verified experimentally with an impedance analyzer. All these verifications give results in very good agreement with the proposed electromechanical model, as well as in terms of resonant frequencies, harvested voltage and power. Finally several experimental investigations are presented with a prototype of spherical sensor. These validations show the adequacy of the predictions with the experimental results. Finally, a test of the harvesting circuit is done in real situation.

Page generated in 0.4871 seconds