Return to search

Optimisation des conditions réactionnelles et création de nouveaux mutants à grande performance du cytochrome p450 BM3 CYP102A1 utilisant les cofacteurs alternatifs NADH et N-benzyl-1,4-dihydronicotinamide

Le cytochrome p450 CYP102A1, mieux connu sous le nom de BM3, provient de la bactérie Bacillus megaterium. Cette enzyme possède un groupement prosthétique hémique lui permettant de catalyser l’insertion d’oxygène dans un lien carbone-hydrogène menant généralement à une hydroxylation du substrat, ce qui en fait une monooxygénase. Ce genre de réaction demeure jusqu’à aujourd’hui difficile à effectuer par chimie traditionnelle ce qui confère un intérêt particulier à cette enzyme. Au contraire des autres cytochromes p450, BM3 est soluble (et non membranaire) et est naturellement fusionnée à son partenaire réductase formant ainsi une seule chaîne polypeptidique. Ainsi, au cours des dernières années, BM3 a attiré beaucoup d’attention de la part de l’industrie de la chimie fine et pharmaceutique due à son potentiel biocatalytique important. Cependant, son usage en industrie est restreint par son instabilité ainsi que par le coût prohibitif du cofacteur qui lui est nécessaire pour catalyser ses réactions, le NADPH. Cette thèse décrit le développement de différentes stratégies visant à libérer les réactions effectuées avec BM3 de leur dépendance au NADPH, tout en maximisant le rendement spécifique de la monooxygénase. En place du NADPH, deux autres cofacteurs de moindre coût furent utilisés comme alternative, soit le NADH et le N-benzyle-1,4- dihydronicotinamide (NBAH) en utilisant le mutant R966D/W1046S de BM3. Afin de maximiser le rendement spécifique de BM3, l’une des stratégies de cette thèse, l’optimisation du milieu réactionnel, repose sur deux éléments clés, soit favoriser la stabilité du cofacteur, car celui-ci est plus instable que l’enzyme elle-même, ainsi que d’abaisser au minimum la température de la réaction, car nous avons constaté que ceci avait pour effet d’augmenter le couplage entre les réactions réductase et monooxygénase et donc la stabilité de l’enzyme. L’effet net de la réaction ainsi optimisée fut d’augmenter le rendement spécifique du mutant R966D/W1046S par un facteur situé entre 2 et 2.6 en fonction du cofacteur utilisé. D’autre part, deux stratégies d’ingénierie enzymatique furent explorées afin de générer des mutations pouvant augmenter la performance de BM3. L’une d’entre elles, la mutagenèse par consensus guidé, généra une librairie de mutants de laquelle les mutants NTD5 et NTD6 furent identifiés, augmentant le rendement spécifique de l’enzyme comparativement à leur parent, R966D/W1046S, par un facteur de 5.2 et 2.3 pour le NBAH et le NADH, respectivement. L’autre stratégie explorée fut d’appliquer une pression sélective sur la bactérie Bacillus megaterium pour forcer, par évolution expérimentale, la performance de l’enzyme. De cette stratégie, un nouveau mutant de BM3 nommé DE, possédant 34 acides aminés substitués sur sa séquence, fut généré. Ce dernier a démontré une plus forte résistance aux solvants organiques ainsi qu’une augmentation de son rendement spécifique vis-à-vis le NADPH et le NADH d’un facteur de 1.23 et 1.76, comparativement à BM3 sauvage, respectivement. Les stratégies décrites dans cette thèse présentent une amélioration significative du rendement spécifique de BM3 ainsi que deux iii nouvelles méthodologies avec lesquelles une enzyme peut être optimisée et de nouvelles mutations bénéfiques identifiées. / The p450 cytochrome CYP102A1, better known as BM3, comes from the bacteria Bacillus megaterium. This enzyme possesses a prosthetic heme group enabling it to catalyze the insertion of oxygen into a carbon-hydrogen bond generally resulting in the hydroxylation of the substrate, the enzyme is therefore a monooxygenase. This type of reaction remains difficult to achieve by traditional chemistry. Unlike other p450 cytochromes, BM3 is soluble (is not membrane bound) and is naturally fused to its reductase partner forming a single polypeptide chain. As such, in recent years, BM3 has garnered much attention from the pharmaceutical and fine chemical industries, due to its high biocatalytic potential. However, its use in industry remains constrained by its instability as well as by the prohibitive cost of its cofactor, NADPH. This thesis describes the development of different strategies aiming at liberating reactions driven with BM3 from their dependence to NADPH whilst maximizing the specific yield of the monooxygenase. Instead of NADPH, two other inexpensive cofactors were used, namely NADH and N-benzyl-1,4-dihydronicotinamide (NBAH) by using the BM3 mutant R966D/W1046S. To maximize BM3 specific yield, one of the strategies used in this thesis work, the optimization of the reaction medium, rested on two key elements. Firstly, favouring the stabilization of the cofactor, as it was found to be more unstable than the enzyme itself and secondly lowering the reaction temperature as this effectively augmented oxidase/reductase reactions coupling and as such the stability of the enzyme. The net effect of the optimized reaction was to enhance the specific yield of the BM3 mutant R966D/W1046S by a factor of 2 and 2,6 depending on which cofactor was used. Two other enzymatic engineering strategies were explored to generate mutations which could enhance the performance of BM3. One of these, consensus guided mutagenesis, generated a library of mutants from which mutants NTD5 and NTD6 were identified enhancing the specific yield of the enzyme comparatively to their parent, R966D/W1046S, by a factor of 5,24 and 2,3 for NBAH and NADH respectively. The other strategy explored was to apply a selective pressure on Bacillus megaterium to force, by experimental evolution, the performance of the enzyme. From this strategy, a new mutant of BM3 called DE, possessing 34 new amino acid substitutions, was generated. This new mutant displayed a greater resistance to organic solvents as well as an augmentation of specific yields when used alongside NADPH and NADH comparatively to wild type BM3 by a factor of 1,23 and 1,76 respectively. The strategies described in this thesis allowed a significative enhancement of BM3 specific yield as well as represent two new methodologies by which new beneficial mutations can be identified.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/66678
Date27 January 2024
CreatorsVincent, Thierry
ContributorsGarnier, Alain, Gaillet, Bruno
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xi, 229 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0028 seconds