Na busca por soluções que maximizem a produção de etanol, o melhoramento genético de diferentes linhagens de levedura tornou-se foco de investigação em diversos centros de pesquisa. Com o recente sequenciamento de uma linhagem selvagem utilizada nas usinas sucroalcooleiras brasileiras, a linhagem PE-2 da espécie Saccharomyces cerevisiae, surgiu o interesse em estudar sua dinâmica durante o processo de fermentação a fim de encontrar aspectos que possam explicar como estas se tornaram mais adaptadas às dornas de fermentação mantendo a alta produtividade de bioetanol. A partir da análise transcricional da linhagem PE-2, Buscamos por métodos de inferência de redes que possam representar a dinâmica dessa levedura. Propomos nesse trabalho a modelagem de dados experimentais temporais das linhagens PE-2 e S288c (utilizada como referência) baseado em um modelo de Redes Booleanas. Trata-se de um modelo onde convertemos dados contínuos em dados discretos (0 or 1) no qual, de acordo com restrições ditadas pelo modelo, são inferidas redes que representem interações gênicas ao longo do tempo baseados nas amostras temporais. Conseguimos modelar, com sucesso, algumas redes utilizando conjuntos com 11 e 12 genes relacionados a genes pertencentes à via da glicólise e fermentação da levedura. / Ethanol production improvements give rise to the breeding of yeast strains, that became the investigation focus in several research centers. Recently, a wild strain used in Brazilian sugarcane industry was sequenced, the PE-2 strain of Saccharomyces cerevisiae, and this event brought an interest in studying the dynamics of the fermentation of this strain in order to understand which aspects this strain become more adapted to the fermentation conditions, maintaining a high capacity to produce bioethanol. From the analysis of transcriptional strain PE-2, we seek for inference networks methods that can represent the dynamics of this yeast.In this work, we model an experimental temporal data of strain PE-2 and strain S288c (used as a reference) based on Boolean networks model. In this model, the data are converted from continuous into discrete data (0 or 1) and, based on constraints rules of Boolean Network model, networks are inferred to represent gene interactions over time based on temporal data. We successfully model networks using a set with 11 and 12 genes related to yeast glycolysis and fermentation pathways.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-29112012-144348 |
Date | 17 October 2012 |
Creators | Noronha, Melline Fontes |
Contributors | Hashimoto, Ronaldo Fumio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds