Currently, one of the main research problems in Structural Bioinformatics is associated to the study and prediction of the 3-D structure of proteins. The 1990’s GENOME projects resulted in a large increase in the number of protein sequences. However, the number of identified 3-D protein structures have not followed the same growth trend. The number of protein sequences is much higher than the number of known 3-D structures. Many computational methodologies, systems and algorithms have been proposed to address the protein structure prediction problem. However, the problem still remains challenging because of the complexity and high dimensionality of a protein conformational search space. This work presents a new computational strategy for the 3-D protein structure prediction problem. A first principle strategy which uses database information for the prediction of the 3-D structure of polypeptides was developed. The proposed technique manipulates structural information from the PDB in order to generate torsion angles intervals. Torsion angles intervals are used as input to a genetic algorithm with a local-search operator in order to search the protein conformational space and predict its 3-D structure. Results show that the 3-D structures obtained by the proposed method were topologically comparable to their correspondent experimental structure.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/142870 |
Date | January 2012 |
Creators | Dorn, Márcio |
Contributors | Lamb, Luis da Cunha, Buriol, Luciana Salete |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds