Return to search

Genome-wide analysis of splicing requirements and function through mRNA profiling

<p> The RNA-binding proteins U2AF and PTB play important roles in gene expression in many eukaryotic species. Although U2AF and PTB have been well-studied, their functional requirements have not been investigated on a genome-wide scale. In this thesis, I analyze RNA expression data to determine the requirement of the general splicing factor U2AF in <i>S. pombe</i> and to identify genes misregulated in Drosophila PTB mutants. I find that many introns are insensitive to U2AF inactivation in a <i>Schizosaccharomyces pombe</i> U2AF59 mutant, <i>prp2.1.</i> Bioinformatics analysis indicates that U2AF-insensitive introns have stronger 5' splice sites and higher A/U composition. The importance of intronic nucleotide composition was further investigated using wild type RNA expression data sets. I show that nucleotide composition is a relatively important factor for regulated intron retention in a variety of species. I also analyzed the RNA-binding protein PTB using RNA Seq data to reveal genes misregulated in PTB mutants in <i>D. melanogaster.</i> I identify misregulation of alternative splicing in PTB mutants and putative PTB binding sites. In the PTB embryonic lethal mutant, which shows dorsoventral patterning defects, I show that dorsal fate genes are significantly up-regulated. I present a model to link PTB to dorsal closure defects. This thesis provides the first genome-wide analysis of U2AF in <i>S. pombe</i> and PTB in <i>Drosophila melanogaster. </i></p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:3607314
Date11 February 2014
CreatorsHeimiller, Joseph Karl
PublisherUniversity of Colorado at Boulder
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0101 seconds