Les industries automobile et aéronautique sont confrontées dans le futur proche à une raréfaction des carburants fossiles, ainsi qu'au problème de pollution de l'environnement émis par les systèmes propulsifs. Pour s'affranchir de ces problèmes, l'utilisation de carburants alternatifs censés apporter rendement et préservation de l'environnement, s'est considérablement développée ces derniers temps. Cependant, leurs impacts sur la pollution, consommation et rendement de combustion ne sont toujours pas clairement établis. En particulier, il est nécessaire de quantifier leurs effets sur les phénomènes physiques clés à la base des processus que sont l'évaporation du carburant liquide et le mélange carburant vapeur/air. L'analyse expérimentale de ces processus physiques nécessite alors l'emploi de diagnostics lasers non-intrusifs et quantitatifs, permettant de mesurer des grandeurs physiques comme les distributions spatiales instantanées de température et de concentration du carburant en phase vapeur. Parmi les techniques optiques les plus attrayantes, l'imagerie de fluorescence induite par laser (PLIF) offre de nombreux avantages. L'objectif de la thèse a été, dans un premier temps, de caractériser les propriétés spectroscopiques de quatre carburants multi-composants, le kérosène (Jet A1), le Biomass-to-Liquid (BtL), le Diesel et l'Ester Méthylique Huile Végétale (EMHV) qui, mis à part le premier, possèdent des propriétés spectroscopiques encore peu connues. L'exploitation de leurs propriétés de fluorescence a ensuite permis d'évaluer leurs capacités à fournir des signaux autorisant la mesure de la température et de la concentration du carburant en phase vapeur. Dans un second temps, un étude exhaustive des propriétés de fluorescence de plusieurs cétones (3-pentanone, benzophénone) et aromatiques (fluoranthène, acénaphtène, naphtalène, 1,2,4-triméthylbenzène...) en fonction de la température et du quenching de l'oxygène moléculaire, a été réalisée à pression atmosphérique pour identifier les traceurs fluorescents potentiellement adaptés au dosage optique des quatre carburants. Les données photophysiques collectées ont ensuite été utilisées pour parfaire l'établissement des couples carburants/traceurs fluorescents ainsi que les stratégies de mesures de température et de concentration de carburant associées. L'exploitation des données acquises lors de différentes campagnes de mesures a ainsi mis en évidence la possibilité de détecter simultanément la fluorescence de plusieurs molécules aromatiques (mono-, di- et/ou tri-aromatique) naturellement présentes ou ajoutées artificiellement dans les carburants. Le cas du Diesel a nécessité le développement d'un carburant modèle pour permettre une étude de son évaporation. L'application de cette nouvelle approche PLIF a été validée sur un injecteur hélicoptère LPP de nouvelle génération fonctionnant avec trois carburants spécifiques que sont le Jet A1, le BtL et un mélange Jet A1/BtL
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00661595 |
Date | 13 December 2011 |
Creators | Ledier, Constantin |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0026 seconds