The objective of this research is to introduce two state-of-the-art wireless biomedical systems: (1) a multiband transcutaneous communication system for implantable microelectronic devices (IMDs) and (2) a new wireless power delivery system, called the “EnerCage,” for experiments involving freely-behaving animals. The wireless multiband link for IMDs achieves power transmission via a pair of coils designed for maximum coupling efficiency. The data link is able to handle large communication bandwidth with minimum interference from the power-carrier thanks to its optimized geometry. Wireless data and power links have promising prospects for use in biomedical devices such as biosensors, neural recording, and neural stimulation devices. The EnerCage system includes a stationary unit with an array of coils for inductive power transmission and three-dimensional magnetic sensors for non-line-of-sight tracking of animal subjects. It aims to energize novel biological data-acquisition and stimulation instruments for long-term experiments, without interruption, on freely behaving small animal subjects in large experimental arenas. The EnerCage system has been tested in one-hour in vivo experiment for wireless power and data communication, and the results show the feasibility of this system. The contributions from this research work are summarized as follows: 1. Development of an inductive link model. 2. Development of an accurate PSC models, with parasitic effects for implantable devices. 3. Proposing the design procedure for the inductive link with optimal physical geometry to maximize the PTE. 4. Design of novel antenna and coil geometry for wireless multiband link: power carrier, forward data link, and back telemetry. 5. Development of a model of overlapping PSCs, which can create a homogenous magnetic in a large experimental area for wireless power transmission at a certain coupling distance. 6. Design and optimization for multi-coil link, which can provide optimal load matching for maximum PTE. 7. Design of the wireless power and data communication system for long-term animal experiments, without interruption, on freely behaving small animal subjects in any shape of experimental arenas.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/51930 |
Date | 08 February 2013 |
Creators | Jow, Uei-Ming |
Contributors | Ghovanloo, Maysam |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Page generated in 0.002 seconds