• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploiting Near Field and Surface Wave Propagation for Implanted Devices

Besnoff, Jordan January 2014 (has links)
<p>This thesis examines the bandwidth shortcomings of conventional inductive coupling biotelemetry systems for implantable devices, and presents two approaches toward an end-to-end biotelemetry system for reducing the power consumption of implanted devices at increased levels of bandwidth. By leveraging the transition zone between the near and far field, scattering in the near field at UHF frequencies for increased bandwidth at low power budgets can be employed. Additionally, taking advantage of surface wave propagation permits the use of single-wire RF transmission lines in biological tissue, offering more efficient signal routing over near field coupling resulting in controlled implant depth at low power budgets.</p><p>Due to the dielectric properties of biological tissue, and the necessity to operate in the radiating near field to communicate via scattered fields, the implant depth drives the carrier frequency. The information bandwidth supplied by each sensing electrode in conventional implants also drives the operating frequency and regime. At typical implant depths, frequencies in the UHF range permit operation in the radiating near field as well as sufficient bandwidth.</p><p>Backscatter modulation provides a low-power, high-bandwidth alternative to conventional low frequency inductive coupling. A prototype active implantable device presented in this thesis is capable of transmitting data at 30 Mbps over a 915 MHz link while immersed in saline, at a communication efficiency of 16.4 pJ/bit. A prototype passive device presented in this thesis is capable of operating battery-free, fully immersed in saline, while transmitting data at 5 Mbps and consuming 1.23 mW. This prototype accurately demodulates neural data while immersed in saline at a distance of 2 cm. This communication distance is extended at similar power budgets by exploiting surface wave propagation along a single-wire transmission line. Theoretical models of single-wire RF transmission lines embedded in high permittivity and conductivity dielectrics are validated by measurements. A single-wire transmission line of radius 152.4 um exhibits a loss of 1 dB/cm at 915 MHz in saline, and extends the implant depth to 6 cm while staying within SAR limits.</p><p>This work opens the door for implantable biotelemetry systems to handle the vast amount of data generated by modern sensing devices, potentially offering new insight into neurological diseases, and may aid in the development of BMI's.</p> / Dissertation
2

Wireless power transfer for implantable biomedical devices using adjustable magnetic resonance

Badr, Basem M. 03 May 2016 (has links)
Rodents are essential models for research on fundamental neurological processing and for testing of therapeutic manipulations including drug efficacy studies. Telemetry acquisition from rodents is important in biomedical research and requires a long-term powering method. A wireless power transfer (WPT) scheme is desirable to power the telemetric devices for rodents. This dissertation investigates a WPT system to deliver power from a stationary source (primary coil) to a moving telemetric device (secondary coil) via magnetic resonant coupling. The continuously changing orientation of the rodent leads to coupling loss/problems between the primary and secondary coils, presenting a major challenge. We designed a novel secondary circuit employing ferrite rods placed at specific locations and orientations within the coil. The simulation and experimental results show a significant increase of power transfer using our ferrite arrangement, with improved coupling at most orientations. The use of a medium-ferrite-angled (4MFA) configuration further improved power transfer. Initially, we designed a piezoelectric-based device to harvest the kinetic energy available from the natural movement of the rodent; however, the harvested power was insufficient to power the telemetric devices for the rodents. After designing our 4MFA device, we designed a novel wireless measurement system (WMS) to collect real-time performance data from the secondary circuit while testing WPT systems. This prevents the measurement errors associated with voltage/current probes or coaxial cables placed directly into the primary magnetic field. The maximum total efficiency of our novel WPT is 14.1% when the orientation of the 4MFA is parallel to the primary electromagnetic field, and a current of 2.0 A (peak-to-peak) is applied to the primary coil. We design a novel controllable WPT system to facilitate the use of multiple secondary circuits (telemetric devices) to operate within a single primary coil. Each telemetric device can tune or detune its resonant frequency independently of the others using its internal control algorithm. / Graduate / 2018-04-26
3

Wide-Range Highly-Efficient Wireless Power Receivers for Implantable Biomedical Sensors

Ouda, Mahmoud 11 1900 (has links)
Wireless power transfer (WPT) is the key enabler for a myriad of applications, from low-power RFIDs, and wireless sensors, to wirelessly charged electric vehicles, and even massive power transmission from space solar cells. One of the major challenges in designing implantable biomedical devices is the size and lifetime of the battery. Thus, replacing the battery with a miniaturized wireless power receiver (WPRx) facilitates designing sustainable biomedical implants in smaller volumes for sentient medical applications. In the first part of this dissertation, we propose a miniaturized, fully integrated, wirelessly powered implantable sensor with on-chip antenna, designed and implemented in a standard 0.18μm CMOS process. As a batteryless device, it can be implanted once inside the body with no need for further invasive surgeries to replace batteries. The proposed single-chip solution is designed for intraocular pressure monitoring (IOPM), and can serve as a sustainable platform for implantable devices or IoT nodes. A custom setup is developed to test the chip in a saline solution with electrical properties similar to those of the aqueous humor of the eye. The proposed chip, in this eye-like setup, is wirelessly charged to 1V from a 5W transmitter 3cm away from the chip. In the second part, we propose a self-biased, differential rectifier with enhanced efficiency over an extended range of input power. A prototype is designed for the medical implant communication service (MICS) band at 433MHz. It demonstrates an efficiency improvement of more than 40% in the rectifier power conversion efficiency (PCE) and a dynamic range extension of more than 50% relative to the conventional cross-coupled rectifier. A sensitivity of -15.2dBm input power for 1V output voltage and a peak PCE of 65% are achieved for a 50k load. In the third part, we propose a wide-range, differential RF-to-DC power converter using an adaptive, self-biasing technique. The proposed architecture doubles the dynamic range of conventional rectifiers. Unlike the continuously self-biased rectifier proposed in the second part, this adaptive rectifier extends the dynamic range while maintaining both the high PCE peak and the sensitivity advantage of the conventional cross-coupled scheme, and can operates in the GHz range.
4

A multiband inductive wireless link for implantable medical devices and small freely behaving animal subjects

Jow, Uei-Ming 08 February 2013 (has links)
The objective of this research is to introduce two state-of-the-art wireless biomedical systems: (1) a multiband transcutaneous communication system for implantable microelectronic devices (IMDs) and (2) a new wireless power delivery system, called the “EnerCage,” for experiments involving freely-behaving animals. The wireless multiband link for IMDs achieves power transmission via a pair of coils designed for maximum coupling efficiency. The data link is able to handle large communication bandwidth with minimum interference from the power-carrier thanks to its optimized geometry. Wireless data and power links have promising prospects for use in biomedical devices such as biosensors, neural recording, and neural stimulation devices. The EnerCage system includes a stationary unit with an array of coils for inductive power transmission and three-dimensional magnetic sensors for non-line-of-sight tracking of animal subjects. It aims to energize novel biological data-acquisition and stimulation instruments for long-term experiments, without interruption, on freely behaving small animal subjects in large experimental arenas. The EnerCage system has been tested in one-hour in vivo experiment for wireless power and data communication, and the results show the feasibility of this system. The contributions from this research work are summarized as follows: 1. Development of an inductive link model. 2. Development of an accurate PSC models, with parasitic effects for implantable devices. 3. Proposing the design procedure for the inductive link with optimal physical geometry to maximize the PTE. 4. Design of novel antenna and coil geometry for wireless multiband link: power carrier, forward data link, and back telemetry. 5. Development of a model of overlapping PSCs, which can create a homogenous magnetic in a large experimental area for wireless power transmission at a certain coupling distance. 6. Design and optimization for multi-coil link, which can provide optimal load matching for maximum PTE. 7. Design of the wireless power and data communication system for long-term animal experiments, without interruption, on freely behaving small animal subjects in any shape of experimental arenas.
5

Ultra-Wideband Transceiver with Error Correction for Cortical Interfaces in NanometerCMOS Process

Luo, Yi 01 May 2017 (has links)
This dissertation reports a high-speed wideband wireless transmission solution for the tight power constraints of cortical interface application. The proposed system deploysImpulse Radio Ultra-wideband (IR-UWB) technique to achieve very high-rate communication. However, impulse radio signals suffer from significant attenuation within the body,and power limitations force the use of very low-power receiver circuits which introduce additional noise and jitter. Moreover, the coils’ self-resonance has to be suppressed to minimize the pulse distortion and inter-symbol interference, adding significant attenuation. To compensate these losses, an Error correction code (ECC) layer is added for functioning reliably to the system. The performance evaluation is made by modeling a pair of physically fabricated coils, and the results show that the ECC is essential to obtain the system’s reliability. Furthermore, the gm/ID methodology, which is based on the complete exploration ofall inversion regions that the transistors are biased, is studied and explored for optimizingthe system at the circuit-level. Specific focuses are on the RF blocks: the low noise am-plifier (LNA) and the injection-locked voltage controlled oscillator (IL-VCO). Through the analytical deduction of the circuit’s features as the function of the gm/ID for each transistor, it is possible to select the optimum operating region for the circuit to achieve the target specification. Other circuit blocks, including the phase shifter, frequency divider,mixer, etc. are also described and analyzed. The prototype is fabricated in a 65-nm CMOS(Complementary Metal-Oxide-Semiconductor) process.
6

Determining, Treating, and Preventing Mechanisms of Sudden Death in Epilepsy using Medical Implantable Devices

Daniel J. Pederson (5930126) 04 January 2019 (has links)
<div> <div> <div> <p>People with epilepsy have an increased risk of mortality when compared to the general population. These increased mortality risks include deaths related to status epilepticus and sudden unexpected death in epilepsy (SUDEP). Physiological data describing cardiac, respiratory, and brain function prior to sudden death in epilepsy is crucial to the studying the underlying mechanisms behind these deaths. Because it is unknown when sudden deaths in epilepsy may occur, continuous monitoring is necessary to guarantee the capture of physiological data prior to death. </p> <p>I have used custom designed implantable devices to continuously measure cardiac, respiratory, and neurological signals in freely behaving rats with chronically induced epilepsy. Due to the continuous respiration measurements, the resultant dataset is the first of its kind. This dataset indicates that respiratory abnormalities (reduced respiration and short apneas) occur during and after seizures. These abnormalities may indicate SUDEP onset because obstructive apneas due to laryngospasm have been indicated as possible causes of SUDEP in other studies. </p> <p>Laryngospasms can be caused by gastric acid coming into contact with the larynx. During a laryngospasm, intrinsic laryngeal muscles contract, resulting in the closure of the airway. Recently published research has indicated that acid reflux may be responsible for triggering fatal laryngospasms in rats with induced seizures. I have found that the larynx can be opened during a laryngospasm by electrically stimulating the recurrent laryngeal nerves. I have also found that performing gastric vagotomies leads to a statistically significant reduction in mortality due to fatal apneas in rats with induced seizures. </p> </div> </div> </div>
7

Vers une application sûre de l'IRM en présence d'implants actifs / Toward a safe application of MRI in the presence of active implants.

Bouldi, Melina 28 November 2014 (has links)
L'IRM est généralement considérée comme une méthode d'imagerie extrêmement sûre. Cependant, en présence d'implants conducteurs, des risques pour la santé du patient existent, plus particulièrement en terme d'échauffement radio-fréquence (RF) des tissus en contact avec l'implant. Suivant les recommandations des fabricants et des autorités sanitaires, certains dispositifs implantés sont autorisés en environnement IRM, sous conditions strictes qui limitent la qualité des images ou rendent l'acquisition impossible. Le but de cette thèse était d'optimiser et de valider les méthodes pour l'évaluation de la sécurité IRM en présence d'implants. Augmenter la prévisibilité des échauffements qui risquent de se produire dans chaque cas précis devrait permettre un élargissement des applications possibles de l'IRM chez des patients porteurs d'implants actifs.Ce projet est basé sur trois approches :- Des mesures et développements de méthodes IRM sur des objet-tests. Des techniques pré-existantes de cartographie du champ RF ont été optimisées afin de couvrir l'ensemble de la gamme dynamique présente dans le cas de courants RF induits dans des conducteurs. Pour ce faire, la technique AMFI (“Actual Multiple Flip-Angle Imaging”) a été développée. Un travail d'optimisation a également été mené sur la thermométrie IRM rapide via la méthode PRFS (“Proton Resonance Frequency Shift”).- Le développement de simulations numériques visant à étudier les interactions électromagnétiques entre les implants et le résonateur RF, ainsi que leurs répercussions thermiques. Un modèle de résonateur RF a été construit et validé à la fois théoriquement et expérimentalement. Le réglage du résonateur a donné lieu au développement d'une méthode numérique originale permettant de déterminer rapidement et précisément les valeurs des capacités. L'évaluation des courants RF induits dans des implants filaires conducteurs, via l'utilisation des cartes de champ RF, a également été développée. Cette méthode de mesure des courants RF induits ouvre la possibilité d'évaluer la sécurité au niveau individuel par une acquisition à faible débit d'absorption spécifique, avant toute autre acquisition IRM, dans le cas d'un possible futur protocole incluant des patients.- La construction d'un modèle numérique simplifié d'une électrode de stimulation cérébrale, via l'utilisation de la théorie des lignes de transmission. Ce modèle rend les simulations RF abordables, et présente les mêmes propriétés électriques que l'électrode réelle. L'échauffement RF en présence d'une électrode DBS a ainsi pu être évalué numériquement par l'intermédiaire de simulations recouvrant la taille du résonateur RF corps-entier.L'ensemble des outils développés au cours de cette thèse permet finalement une amélioration des méthodes disponibles afin d'évaluer la sécurité RF en présence d'implants conducteurs. / MRI is generally considered to be an exceptionally safe imaging method. However, in the presence of electrically conducting implants health risks exist, particularly in terms of RF heating of the tissues in contact with the implant. Some implants are cleared by the manufacturers or regulatory agencies for MR imaging of patients, but only under strictly limited conditions which often degrade image quality and exclude many configurations. The goal of this thesis project was to optimize and validate the methods for the assessment of MR safety in the presence of active implants. Increasing the predictability of the risk of RF heating in individual subjects should allow MRI to find wider applications in patients implanted with active devices.This project is based on three distinct approaches:- Measurements and MR method developments performed on test objects. Existing B1-mapping techniques were optimized for the specific needs of high dynamic range encountered in the presence of induced RF currents in conductors, leading to the “Actual Multiple Flip-Angle Imaging” technique. Further work has been performed on the optimization of rapid “Proton Resonance Frequency Shift” MR thermography.- The development of numerical simulations of the electromagnetic interactions between the RF resonator and implants as well as their thermal impact. A numerical RF resonator model was built and validated it using both theoretical and experimental studies. The optimization of the resonator has led to the development of an original method to rapidly and precisely adjust the individual capacitor values to obtain a given targeted current distribution. Separately, the measurement of RF currents induced in conductive wires, via B1 mapping, was developed. This method to measure RF currents in a specific configuration opens the possibility to evaluate RF safety in individual subjects using a low-SAR prescan prior to other acquisitions, for use in hypothetical future protocols on patients.- The construction of a simplified numerical model of deep brain stimulation electrodes, using transmission line theory. This model renders RF simulations tractable, while exhibiting the same electrical behavior as the real implant, allowing evaluation of RF heating in simulations covering the size of a whole-body MR resonator.The set of tools developed improve upon the currently available methods for the evaluation of RF safety in the presence of conductive implants.
8

Contributions des propriétés physico-chimiques de surfaces de titane sur l'adhérence de microorganismes : application aux chambres implantables / Contributions of physico-chemical properties of titanium based surfaces on the adherence of microorganisms : application to totally implantable venous-access ports

Fabre, Héloïse 27 September 2017 (has links)
Les chambres implantables sont des dispositifs médicaux utilisés pour l’'administration de produits de chimiothérapie et/ou de nutrition parentérale. Comme la plupart des implants médicaux, ces dispositifs peuvent être à l’'origine d’infections nosocomiales. L’'objectif de la thèse a été d’'étudier la contribution des modifications physico-chimiques de surface de matériaux à base de titane sur l’'adhérence de microorganismes. Des surfaces présentant différentes caractéristiques ont été élaborées et l’'adhérence de la bactérie Staphylococcus aureus et de la levure Candida albicans a été testée in vitro en conditions statiques. Des surfaces modèles de TiO2 présentant des rugosités à l’'échelle du nanomètre et du micromètre ont été élaborées avec des wafers de silicium revêtues d’'un film mince d’'oxyde de titane déposé par pulvérisation cathodique. Des surfaces d’'alliages de titane grade 2 et grade 5 ont été modifiées par polissage, sablage ou électroérosion, créant différentes morphologies. Il est apparu que le nombre de microorganismes adhérents changeait certes avec la rugosité, mais était fonction de la morphologie de surface des matériaux et de la taille du microorganisme. Des surfaces lisses de TiO2 ont ensuite été fonctionnalisées par greffage moléculaire pour modifier le caractère hydrophile/hydrophobe de surface. L’'étude de l’'adsorption de protéines du plasma sanguin, par QCM, a permis de mieux expliquer l’'adhérence de bactéries et de levures sur ces surfaces. L’'influence de la nutrition parentérale et des produits de chimiothérapie sur les surfaces a aussi été étudiée afin de se rapprocher des conditions d’'utilisation des chambres implantables. / Totally implantable venous-access ports are medical devices used for the administration of chemotherapy drugs and/or parenteral nutrition. Infections can occur and it is indispensable in modern-day medical practice to prevent and reduce the rare infectious complications. In this context, the goal of this work was to study the contribution of the modification of physico-chemical properties of titanium based surfaces on the adherence of microorganisms. Surfaces with different characteristics were produced and the adherence of the bacterium Staphylococcus aureus and the yeast Candida albicans was studied in vitro in static conditions. Model surfaces made of titanium dioxide with roughness from nanometer to micrometer were elaborated using silicon wafers recovered with a thin film of titanium dioxide deposited by plasma vapor deposition. Titanium alloy surfaces (Ti grade 2 and Ti grade 5) were modified by polishing, grit-blasting or wire erosion, to create different surface morphologies. In vitro studies were performed and it was found that the number of adhering microorganisms changed with roughness, but more importantly with the surface morphology of the biomaterials and microorganisms size. Flat titanium dioxide thin films were then functionalized by molecular grafting to modify the hydrophobicity of the surface. Study of plasma protein adsorption, by QCM, allowed to better explain the adherence of bacteria and yeast onto these surfaces. The influence of parenteral nutrition and chemotherapy drugs was also studied in order to better approach the real conditions of totally implantable venous-access ports.
9

Raisonnement automatique basé ontologies appliqué à la hiérarchisation des alertes en télécardiologie / Ontology based Automatic Reasoning applied to telecardiology alerts

Rosier, Arnaud 11 September 2015 (has links)
Introduction :La télésurveillance des stimulateurs cardiaques et défibrillateurs sera à terme le standard pour le suivi des patients implantés. Pourtant, des alertes très nombreuses sont générées par ces dispositifs, et constituent un fardeau pour la prise en charge médicale. De plus, les alertes générées le sont indépendamment du contexte médical individuel du patient, et elles pourraient donc être mieux caractérisées. Cette thèse propose un outil de traitement automatique des alertes générées par la survenue de fibrillation atriale, et basé sur une modélisation des connaissances médicales de type ontologie en OWL2. En particulier, le score de risque cardio-embolique CHA2DS2VASc a été évalué par le biais de l’ontologie, ainsi que le statut d’anticoagulation du patient. Matériel et Méthodes :Une ontologie d’application a été créée en OWL2, afin de représenter les concepts nécessaires au raisonnement sur les alertes. Cette ontologie a été utilisée pour raisonner sur 1783 alertes de FA détectées chez 60 porteurs de stimulateurs cardiaques. Les alertes ont été classées automatiquement selon leur importance d’après une échelle de gravité de 1 à 4. La classification automatique a été comparée à celle réalisée par 2 experts médicaux comme référence. Résultats : 1749 alertes sur 1783 (98%) ont été classées correctement. 58 des 60 patients avaient toutes leurs alertes classées à l’identique par le système testé et par les évaluateurs-médecins. Une approche basée ontologie est à même de permettre un raisonnement automatique sur des données issues de dispositifs médicaux connectés, en les contextualisant en fonction des données médicales individuelles du patient. / Introduction :Remote monitoring of cardiac implantable electronic devices (CIED) such as pacemakers and defibrillators is the new follow-up standard. However, the numerous alerts generated in remote monitoring causes a burden for physicians. Morever, many alerts are notified despite the knowledge of patient condition and could be refined. This work proposes an automatic tool for classifying atrial fibrillation alert, based on an ontological knowledge model in OWL2. In particular, CHA2DS2VASc thrombo-embolic risk score and patient anticogulation status are accounted in order to determine alert importance. Materials and methods :An application ontology was designed in OWL2, in order to represent the concepts needed for processing alerts. This ontology was used to infer the importance of 1783 AF alerts among 60 CIED recipients, using a 4-grade scale. Automatic classification was compared to that of 2 medical experts.Results :1749 of 1783 alerts (98%) were correctly classified. 58 of 60 patients had every alerts classified with the same importance by the prototype and the human experts. An ontology-driven automatic reasoning tool is able to classify remote monitoring alerts, by using individual medical context. This technology could be important for managing data generated by connected medical devices.
10

ANTI-BIOFOULING IMPLANTABLE CATHETER USING THIN-FILM MAGNETIC MICROACTUATORS

Qi Yang (7104800) 12 October 2021 (has links)
<p>Hydrocephalus is a neurological disease characterized by abnormal accumulation of cerebral spinal fluid (CSF) in ventricle of brain. 1 in 1000 newborns are affected each year and it is life-threatening if left untreated. The golden standard of treatment is to surgically implant a shunt that divert excessive CSF away from ventricle to alleviate intraventricular pressure (ICP) in patient. Unfortunately, shunt failure rate is notoriously high because of obstruction of catheter intake pore. The obstruction is primary caused by normal and inflammatory tissue (biofilm) buildup over time. Shunt replacement surgery is typically required after only 1 year of implantation for 40% of patients. To prolong the lifespan of hydrocephalus shunt, we previously proposed and designed magnetic micro-actuators platform to remove biofilm mechanically. Removal of muscle cells and microbeads were demonstrated from wafer level devices on bench-top.</p><p> </p><p>To examine device efficacy in ventricular catheter, I developed magnetic actuator on polymer substrate. First, polyimide based flexible thin-film devices were microfabricated and integrated into a single-pore silicone catheter. A proof-of-concept self-clearing smart catheter was presented. Removal of microscopic biofilm was evaluated against bovine serum protein (BSA). Detachment of BSA up to 95% was achieved by shear stress from magnetic actuation. Next, I developed resistive deflection sensing using a metallic strain gauge, allowing device alignment with magnetic field for maximum energy delivery. In addition, auxiliary functionalities such as occlusion detection and flow rate measurement were demonstrated on catheter. Moreover, a new serpentine cantilever geometry with increased magnetic volume was proposed for improved delivery of torque and deflection. In a benchtop evaluation, we showed prolonged catheter drainage (7x) in a dynamic fluid environment containing macroscopic blood clots. Finally, using an intraventricular hemorrhage (IVH) porcine model, we observed that self-clearing catheter had longer survival than control catheter (80% vs. 0%) over the course of 6 weeks. Animals treated with magnetic actuation had significantly smaller ventricle size after 1 week of implantation.</p>

Page generated in 0.0765 seconds