Return to search

SYNTHETIC AND MECHANISTIC STUDY OF ENANTIO- AND STEREOSELECTIVE HOUSE–MEINWALD REARRANGEMENT OF CONGESTED TRISUBSTITUTED SPIRO-EPOXIDES

Published Content: Jeedimalla, N.; Jacquet, C.; Bahneva, D.; Youte Tendoung, J.-J.; Roche, S. P. J. Org. Chem. 2018, 83, 12357.
The present thesis will be focused on the study of House-Meinwald Rearrangement (HMR) reactions for the congested trisubstituted spiro-epoxide molecules. Including their regio-selective, chemo-selective, enantio- selective selective and stereo-selectivity’s will be discussed in detailed by the mechanistic study approach of HMR reaction of trisubstituted spiro-epoxides.
Chapter 1 will present the efforts towards the biomimetic total synthesis of meroterpenoid natural product (+)-liphagal, which possess a recognizable biological activity. The shortcomings associated with its stereochemical assignment, and also the revision of stereochemical assignment of siphonodictyal B, through which the biosynthesis of (+)-liphagal was proposed were discussed.
Chapter 2 will focus on the study of regio and chemoselective HMR reaction. In addition, a three-step sequence for the synthesis of α-arylated cyclohexanones and the most challenging cycloheptanones is reported. First, an efficient one-pot synthesis of β, β’-disubstituted benzylidene cycloalkanes using the palladium-catalyzed Barluenga reaction from readily available feedstock chemicals is described. Second, an epoxidation followed by the HMR of spiro-epoxides is reported to produce a number of α -arylated cycloalkanones upon the ring expansion. Reactions catalyzed by bismuth triflate underwent quasi-exclusively ring expansion for all substrates (electronically poor and rich), demonstrating the difficulty to achieve the ring enlargement for electron deficient spiro-epoxides. On the other hand, via catalysis with aluminium trichloride the rearrangement proceeded typically in high yields and with remarkable regioselectivity. In this case, a switch of regioselectivity was achieved for spiro-epoxides with electron-withdrawing substituents which enabled this method to be successfully extended to some chemo specific arene shifts and it can also synthesize aldehydes derivatives bearing a α-quaternary carbon. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_41940
ContributorsJeedimalla, Nagalakshmi (author), Roche, Stephane P. (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Chemistry and Biochemistry
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format225 p., application/pdf
RightsCopyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.2011 seconds