Spelling suggestions: "subject:"biomimetic materials:numerical synthesis"" "subject:"biomimetic thematerialsmechanical synthesis""
1 |
SYNTHETIC AND MECHANISTIC STUDY OF ENANTIO- AND STEREOSELECTIVE HOUSE–MEINWALD REARRANGEMENT OF CONGESTED TRISUBSTITUTED SPIRO-EPOXIDESUnknown Date (has links)
Published Content: Jeedimalla, N.; Jacquet, C.; Bahneva, D.; Youte Tendoung, J.-J.; Roche, S. P. J. Org. Chem. 2018, 83, 12357.
The present thesis will be focused on the study of House-Meinwald Rearrangement (HMR) reactions for the congested trisubstituted spiro-epoxide molecules. Including their regio-selective, chemo-selective, enantio- selective selective and stereo-selectivity’s will be discussed in detailed by the mechanistic study approach of HMR reaction of trisubstituted spiro-epoxides.
Chapter 1 will present the efforts towards the biomimetic total synthesis of meroterpenoid natural product (+)-liphagal, which possess a recognizable biological activity. The shortcomings associated with its stereochemical assignment, and also the revision of stereochemical assignment of siphonodictyal B, through which the biosynthesis of (+)-liphagal was proposed were discussed.
Chapter 2 will focus on the study of regio and chemoselective HMR reaction. In addition, a three-step sequence for the synthesis of α-arylated cyclohexanones and the most challenging cycloheptanones is reported. First, an efficient one-pot synthesis of β, β’-disubstituted benzylidene cycloalkanes using the palladium-catalyzed Barluenga reaction from readily available feedstock chemicals is described. Second, an epoxidation followed by the HMR of spiro-epoxides is reported to produce a number of α -arylated cycloalkanones upon the ring expansion. Reactions catalyzed by bismuth triflate underwent quasi-exclusively ring expansion for all substrates (electronically poor and rich), demonstrating the difficulty to achieve the ring enlargement for electron deficient spiro-epoxides. On the other hand, via catalysis with aluminium trichloride the rearrangement proceeded typically in high yields and with remarkable regioselectivity. In this case, a switch of regioselectivity was achieved for spiro-epoxides with electron-withdrawing substituents which enabled this method to be successfully extended to some chemo specific arene shifts and it can also synthesize aldehydes derivatives bearing a α-quaternary carbon. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
|
2 |
Structural characterisation and in vitro behaviour of apatite coatings and powders.Etok , S E 17 November 2009 (has links)
Hydroxyapatite (HAP) coatings are used in orthopaedic surgery for bone regeneration.
Current methods of phase quantification of HAP coatings suffer from drawbacks. A
novel methodology of quantitative phase analysis of HAP coatings has been devised and
validated. This method, based on whole pattern fitting with a fundamental parameters
approach, incorporates amorphous calcium phosphate (ACP) and apatite phases into
structural refinements.
A comparison of the structural and chemical properties of plasma sprayed (PS) and novel
electrodeposited (ED) HAP coatings has been conducted. ED coatings contained less
ACP and more preferred orientation than the PS coatings, although the stoichiometry was
similar.
In vitro investigations of PS and ED coatings in simulated body fluid and foetal calf
serum revealed that both are bioactive. A carbonated apatite layer produced on the ED
coatings was -0.7μm thick with a stoichiometry and chemical constituents similar to that
of natural bone apatite.
PS coatings produced a nanocrystalline carbonated apatite layer (-4μm). For the first
time it has been possible to model crystalline HAP and nanocrystalline apatite as
independent phases and obtain accurate lattice parameters for each.
A positive linear correlation has been made between microstrain and the solubility of
HAP and carbonated apatites. Dissolution studies have shown that the behaviour of HAP
and carbonated apatite is dominated by crystallite size at low undersaturation and by
crystallite size and microstrain at high undersaturation for crystallites between -30OA-
1000A. Metastable equilibrium occurred for crystallites <_400A at low undersaturation.
Carbonate content did not affect the solubility or dissolution behaviour.
A novel technology for coating polymeric tape with HAP for potential use in anterior
cruciate ligament reconstruction has been devised. Mechanical tests have demonstrated
that no adverse properties are induced by the coating technology. Cell culture studies
have shown that the HAP layer is capable of enhanced attachment, proliferation and
differentiation of osteoblast cells compared to uncoated tape.
|
3 |
Structural characterisation and in vitro behaviour of apatite coatings and powdersEtok, Susan Essien January 2005 (has links)
Hydroxyapatite (HAP) coatings are used in orthopaedic surgery for bone regeneration. Current methods of phase quantification of HAP coatings suffer from drawbacks. A novel methodology of quantitative phase analysis of HAP coatings has been devised and validated. This method, based on whole pattern fitting with a fundamental parameters approach, incorporates amorphous calcium phosphate (ACP) and apatite phases into structural refinements. A comparison of the structural and chemical properties of plasma sprayed (PS) and novel electrodeposited (ED) HAP coatings has been conducted. ED coatings contained less ACP and more preferred orientation than the PS coatings, although the stoichiometry was similar. In vitro investigations of PS and ED coatings in simulated body fluid and foetal calf serum revealed that both are bioactive. A carbonated apatite layer produced on the ED coatings was -0.7μm thick with a stoichiometry and chemical constituents similar to that of natural bone apatite. PS coatings produced a nanocrystalline carbonated apatite layer (-4μm). For the first time it has been possible to model crystalline HAP and nanocrystalline apatite as independent phases and obtain accurate lattice parameters for each. A positive linear correlation has been made between microstrain and the solubility of HAP and carbonated apatites. Dissolution studies have shown that the behaviour of HAP and carbonated apatite is dominated by crystallite size at low undersaturation and by crystallite size and microstrain at high undersaturation for crystallites between -30OA- 1000A. Metastable equilibrium occurred for crystallites <_400A at low undersaturation. Carbonate content did not affect the solubility or dissolution behaviour. A novel technology for coating polymeric tape with HAP for potential use in anterior cruciate ligament reconstruction has been devised. Mechanical tests have demonstrated that no adverse properties are induced by the coating technology. Cell culture studies have shown that the HAP layer is capable of enhanced attachment, proliferation and differentiation of osteoblast cells compared to uncoated tape.
|
Page generated in 0.1175 seconds