Return to search

Self-Assembly, Templation and Biomimetics

Self-assembly, templation and biomimetics are three important, overlapping areas in supramolecularChemistry. Some contributions to these three areas are introduced. Novel substituted trispyridylmethanol derived ligands were synthesized to mimic the active site of carbonic anhydrase. The key two-step process in constructing the trispyridylmethanol core structure is proven to be more efficient than the traditional one-step synthesis. Self-assembly is a very efficient way to form nanoscale structure from relatively simple subunits. Tetraphenylmethane-based subunits were synthesized. The result of self-assembly reactions demonstrated the formation of 1~3 nm sized molecules in one step. Potential multi-generation self-assembly on this subunit is also discussed. A novel and efficient approach for the synthesis of large aromatic crown ethers, using resorcinarenes as templates, has been developed. This simple threestep process generated a new family of aromatic crown ethers in up to 50% overall yield. As intermediates from these three-step syntheses, a large variety of molecular "baskets", which have been shown to be excellent hosts for adamantanes, have also been obtained.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1007
Date20 December 2002
CreatorsLi, Xuehe
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0015 seconds