Return to search

Morphogenesis and Protein Composition of Valve Silica Deposition Vesicles from Diatoms

The silica-based cell walls of diatoms are outstanding examples of nature’s capability to synthesize complex porous structures with genetically controlled patterns from the nanometer scale to the range of hundreds of micrometers. Formation of the cell wall building blocks (valves and girdle bands) occurs in membrane-bound compartments, termed silica deposition vesicles (SDVs), which are unique organelles in silica-forming protists. Isolation of the SDVs has not yet been achieved, which has severely hampered the efforts to understand the mechanisms of biological silica morphogenesis. The present thesis aimed to address this shortcoming. The foundation was the development of an improved cell cycle synchronization and a fluorescence labeling method for the model diatom Thalassiosira pseudonana that enabled rapid identification of valve SDVs in a cell lysate. Correlative fluorescence and electron microscopy allowed visualizing the development of valve silica with unprecedented spatio-temporal resolution. Elemental analysis and demineralization of immature valves provided the first direct chemical evidence that silica morphogenesis is an interplay of inorganic and organic molecules inside the valve SDVs. Cryo TEM imaging of valve SDVs indicated the formation of organic patterns that precede silica depostion. From these observations, an organic biomolecule dependent, liquid-liquid phase separation based model for pore formation in the diatom T. pseudonana was proposed. The second part of this thesis was focused on the enrichment of valve SDVs from T. pseudonana and the subsequent proteomics based identification of more than 40 potential valve SDV proteins. Among these, three diatom-specific proteins contained conserved protein protein interaction domains (ankyrin-repeats) and were surprisingly predicted to be located in the cytoplasm. The fluorescent tagging of the three proteins (termed dANK1-3) confirmed their association with the valve SDVs. When the respective dank genes were knocked out by CRISPR/Cas9, the valves displayed permanent anomalies in the quantity and the pattern of ~22 nm sized pores. Double knockout mutants lacking both dank1 and dank3 were almost completely devoid of pores. The analysis of valve morphogenesis in the single and double knockout mutants revealed phenotypic changes that were consistent with the liquid-liquid phase separation based model for pore pattern formation in diatom biosilica. The work of this thesis has provided for the first time direct access to valve SDVs, which has opened entirely new possibilities for studying the composition, properties, and working mechanism of an organelle that forms a complex shaped mineral.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78691
Date05 April 2022
CreatorsHeintze, Christoph
ContributorsKröger, Nils, Brunner, Eike, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationinfo:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/Nanopatterned Organic Matrices in Biological Silica Mineralization/KR 1853/5// Struktur- und Funktionsanalyse Silica-bildender Organischer Matrizen/SP-1

Page generated in 0.002 seconds