• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphogenesis and Protein Composition of Valve Silica Deposition Vesicles from Diatoms

Heintze, Christoph 05 April 2022 (has links)
The silica-based cell walls of diatoms are outstanding examples of nature’s capability to synthesize complex porous structures with genetically controlled patterns from the nanometer scale to the range of hundreds of micrometers. Formation of the cell wall building blocks (valves and girdle bands) occurs in membrane-bound compartments, termed silica deposition vesicles (SDVs), which are unique organelles in silica-forming protists. Isolation of the SDVs has not yet been achieved, which has severely hampered the efforts to understand the mechanisms of biological silica morphogenesis. The present thesis aimed to address this shortcoming. The foundation was the development of an improved cell cycle synchronization and a fluorescence labeling method for the model diatom Thalassiosira pseudonana that enabled rapid identification of valve SDVs in a cell lysate. Correlative fluorescence and electron microscopy allowed visualizing the development of valve silica with unprecedented spatio-temporal resolution. Elemental analysis and demineralization of immature valves provided the first direct chemical evidence that silica morphogenesis is an interplay of inorganic and organic molecules inside the valve SDVs. Cryo TEM imaging of valve SDVs indicated the formation of organic patterns that precede silica depostion. From these observations, an organic biomolecule dependent, liquid-liquid phase separation based model for pore formation in the diatom T. pseudonana was proposed. The second part of this thesis was focused on the enrichment of valve SDVs from T. pseudonana and the subsequent proteomics based identification of more than 40 potential valve SDV proteins. Among these, three diatom-specific proteins contained conserved protein protein interaction domains (ankyrin-repeats) and were surprisingly predicted to be located in the cytoplasm. The fluorescent tagging of the three proteins (termed dANK1-3) confirmed their association with the valve SDVs. When the respective dank genes were knocked out by CRISPR/Cas9, the valves displayed permanent anomalies in the quantity and the pattern of ~22 nm sized pores. Double knockout mutants lacking both dank1 and dank3 were almost completely devoid of pores. The analysis of valve morphogenesis in the single and double knockout mutants revealed phenotypic changes that were consistent with the liquid-liquid phase separation based model for pore pattern formation in diatom biosilica. The work of this thesis has provided for the first time direct access to valve SDVs, which has opened entirely new possibilities for studying the composition, properties, and working mechanism of an organelle that forms a complex shaped mineral.
2

U(VI) bioaccumulation by Paenibacillus sp. JG-TB8 and Sulfolobus acidocaldarius

Reitz, Thomas 01 February 2012 (has links) (PDF)
In this thesis, the interactions of U(VI) with one representative each of the domains Bacteria (Paenibacillus sp. JG TB8) and Archaea (Sulfolobus acidocaldarius) are compared. We demonstrate that at highly acidic conditions (pH ≤ 3), U(VI) is bound to cells of the both strains exclusively via organic phosphate groups. In contrast to this, the U(VI) complexation modes differ between the studied strains at moderate acidic conditions. These differences are assigned to the different cell wall structures of both strains as well as to their different physiological characteristics. We also demonstrate that the aeration conditions can strongly influence the uranium accumulation of facultative anaerobic microorganisms at moderate acidic pH conditions. This finding could clearly be assigned to the dependency of the intrinsic phosphatase activity on the aeration conditions. The second part of this thesis deals with the outermost surface layer (SlaA-layer) of S. acidocaldarius. It was shown that this surface protein is not involved in the U(VI) complexation at highly acidic conditions, covering the physiological pH optimum of S. acidocaldarius. Hence the SlaA layer does not provide a protective function against U(VI) to the cells of this acidophilic archaeon. However, we demonstrated that purified SlaA-layer ghosts (i.e. empty cell sacculi) efficiently interact with gold ions and are a good macromolecular template for the formation of magnetic gold nanoparticles. / In dieser Doktorarbeit werden die Wechselwirkungen von U(VI) mit je einem Vertreter der Bakterien (Paenibacillus sp. JG TB8) und Archeen (Sulfolobus acidocaldarius) verglichen. Wir konnten zeigen, dass U(VI) im sehr sauren Milieu (pH ≤ 3) ausschließlich durch organische Phosphatgruppen an die Zellen beider Stämme gebunden ist. Im Gegensatz dazu unterscheiden sich die Mechanismen der U(VI)-Komplexierung beider untersuchter Stämme bei mäßig sauren Bedingungen voneinander. Diese Unterschiede basieren auf den unterschiedlichen Zellwandstrukturen und physiologischen Eigenschaften beider Stämme. Wir konnten außerdem zeigen, dass die atmosphärischen Bedingungen die Urankomplexierung durch fakultativ anaerobe Mikroorganismen bei mäßig sauren Bedingungen stark beeinflussen kann. Dieses Ergebnis konnte eindeutig auf die von den atmosphärischen Bedingungen-abhängige, enzymatische Aktivität der zelleigenen Phosphatase zurückgeführt werden. Der zweite Teil dieser Arbeit beschäftigt sich mit der äußeren Oberflächenschicht (SlaA-layer) von S. acidocaldarius. Es konnte gezeigt werden, dass dieses Oberflächenprotein nicht an der U(VI)-Komplexierung bei stark sauren pH, welcher dem physiologischen pH Optimum von S. acidocaldarius entspricht, beteiligt ist. Damit stellt der SlaA-layer keinen Schutz gegen Uran für die Zellen dieses azidothermophilen Archaeons dar. Allerdings konnten wir zeigen, dass isolierte „SlaA-layer ghosts“ (d.h. leere Zellhüllen) mit Goldionen interagieren und sich daher als makromolekulares Template für die Herstellung magnetischer Gold Nanopartikel eignen.
3

U(VI) bioaccumulation by Paenibacillus sp. JG-TB8 and Sulfolobus acidocaldarius: U(VI) bioaccumulation by Paenibacillus sp. JG-TB8 and Sulfolobus acidocaldarius: Au(0) nanoclusters formation on the S-layer of S. acidocaldarius

Reitz, Thomas 13 December 2011 (has links)
In this thesis, the interactions of U(VI) with one representative each of the domains Bacteria (Paenibacillus sp. JG TB8) and Archaea (Sulfolobus acidocaldarius) are compared. We demonstrate that at highly acidic conditions (pH ≤ 3), U(VI) is bound to cells of the both strains exclusively via organic phosphate groups. In contrast to this, the U(VI) complexation modes differ between the studied strains at moderate acidic conditions. These differences are assigned to the different cell wall structures of both strains as well as to their different physiological characteristics. We also demonstrate that the aeration conditions can strongly influence the uranium accumulation of facultative anaerobic microorganisms at moderate acidic pH conditions. This finding could clearly be assigned to the dependency of the intrinsic phosphatase activity on the aeration conditions. The second part of this thesis deals with the outermost surface layer (SlaA-layer) of S. acidocaldarius. It was shown that this surface protein is not involved in the U(VI) complexation at highly acidic conditions, covering the physiological pH optimum of S. acidocaldarius. Hence the SlaA layer does not provide a protective function against U(VI) to the cells of this acidophilic archaeon. However, we demonstrated that purified SlaA-layer ghosts (i.e. empty cell sacculi) efficiently interact with gold ions and are a good macromolecular template for the formation of magnetic gold nanoparticles. / In dieser Doktorarbeit werden die Wechselwirkungen von U(VI) mit je einem Vertreter der Bakterien (Paenibacillus sp. JG TB8) und Archeen (Sulfolobus acidocaldarius) verglichen. Wir konnten zeigen, dass U(VI) im sehr sauren Milieu (pH ≤ 3) ausschließlich durch organische Phosphatgruppen an die Zellen beider Stämme gebunden ist. Im Gegensatz dazu unterscheiden sich die Mechanismen der U(VI)-Komplexierung beider untersuchter Stämme bei mäßig sauren Bedingungen voneinander. Diese Unterschiede basieren auf den unterschiedlichen Zellwandstrukturen und physiologischen Eigenschaften beider Stämme. Wir konnten außerdem zeigen, dass die atmosphärischen Bedingungen die Urankomplexierung durch fakultativ anaerobe Mikroorganismen bei mäßig sauren Bedingungen stark beeinflussen kann. Dieses Ergebnis konnte eindeutig auf die von den atmosphärischen Bedingungen-abhängige, enzymatische Aktivität der zelleigenen Phosphatase zurückgeführt werden. Der zweite Teil dieser Arbeit beschäftigt sich mit der äußeren Oberflächenschicht (SlaA-layer) von S. acidocaldarius. Es konnte gezeigt werden, dass dieses Oberflächenprotein nicht an der U(VI)-Komplexierung bei stark sauren pH, welcher dem physiologischen pH Optimum von S. acidocaldarius entspricht, beteiligt ist. Damit stellt der SlaA-layer keinen Schutz gegen Uran für die Zellen dieses azidothermophilen Archaeons dar. Allerdings konnten wir zeigen, dass isolierte „SlaA-layer ghosts“ (d.h. leere Zellhüllen) mit Goldionen interagieren und sich daher als makromolekulares Template für die Herstellung magnetischer Gold Nanopartikel eignen.
4

Untangling the Mechanisms of Lattice Distortions in Biogenic Crystals across Scales

Schoeppler, Vanessa, Cook, Phil K., Detlefs, Carsten, Demichelis, Raffaella, Zlotnikov, Igor 04 June 2024 (has links)
Biomineralized structures are complex functional hierarchical assemblies composed of biomineral building blocks joined together by an organic phase. The formation of individual mineral units is governed by the cellular tissue component that orchestrates the process of biomineral nucleation, growth, and morphogenesis. These processes are imprinted in the structural, compositional, and crystallographic properties of the emerging biominerals on all scales. Measurement of these properties can provide crucial information on the mechanisms that are employed by the organism to form these complex 3D architectures and to unravel principles of their functionality. Nevertheless, so far, this has only been possible at the macroscopic scale, by averaging the properties of the entire composite assembly, or at the mesoscale, by looking at extremely small parts of the entire picture. In this study, the newly developed synchrotron-based dark-field X-ray microscopy method is employed to study the link between 3D crystallographic properties of relatively large calcitic prisms in the shell of the mollusc Pinna nobilis and their local lattice properties with extremely high angular resolution down to 0.001°. Mechanistic links between variations in local lattice parameters and spacing, crystal orientation, chemical composition, and the deposition process of the entire mineral unit are unraveled.

Page generated in 0.0603 seconds