隨著個人計算機運算能力的快速發展,虛擬藥物篩檢已被廣泛運用。目前運用於計算機輔助藥物虛擬篩選的化合物數據庫多為人工合成的數據庫,而用於天然產物藥物篩選的數據庫則較少報道。為了加速天然化合物的虛擬篩選,我們建立了包含約8000個天然產物的數據庫。他們中的大多數為傳統中藥。 / 為了驗證天然產物數據庫的可用性,其被用於篩選乙酰膽鹼酯酶抑製劑。該數據庫成功地確定了美國藥品監督管理局所批準的乙酰膽鹼酯酶抑製劑,如石杉鹼甲和他克林,表示該天然產物數據庫可以用於藥物虛擬對接篩選。 / 除了已知的乙酰膽鹼酯酶抑製劑,十二種植物化學物(大黃酸,大黃素,蘆薈大黃素,大黃酚,花椒毒素,珊瑚菜素,別異歐前胡素,歐前胡素,紫草素,乙酰紫草素,異戊紫草素和β,β-二甲基丙烯酰紫草素)被確定為新的乙酰膽鹼酯酶抑製劑。澱粉樣蛋白聚集可以導致神經細胞死亡;本研究中新發現的乙酰膽鹼酯酶抑製劑乙酰紫草素能夠阻止澱粉樣蛋白的聚集。除此之外,乙酰紫草素及其衍生物可以對抗過氧化氫誘導的神經細胞凋亡。其抗凋亡的活性作用是通過抑制活性氧的產生,以及保護線粒體膜電位的損失所實現的。亞鐵血紅素加氧酶在其神經細胞保護作用中起重要作用。 / 趨化因子受體4為跨膜G蛋白偶聯受體(GPCRs)。 CXCR4已被確定為一個新治療以及預防腫瘤轉移的新靶點。本研究利用分子對接篩選,從天然產物數據庫篩選選出CXCR4拮抗劑。通過分子對接和基於細胞的測定,黃芪甲苷,羥基紅花黃色素A和水飛薊賓已被確定為CXCR4拮抗劑。抗轉移的研究表明,黃芪甲苷和水飛薊賓抑制CXCL12誘導乳腺癌細胞的遷移和侵襲。此外,水飛薊賓也抑制CXCL12誘導的人臍靜脈內皮細胞管形成。另一方面,羥基紅花黃色素A對乳腺癌細胞的增殖表現出較強的抑製作用,因此很難進行抗轉移實驗。 / With the rapid advances in personal computing power, virtual drug screening has become increasingly popular. While there are numerous databases for synthetic compounds, there are few natural product databases that are specifically for in silico docking studies. To facilitate virtual docking on natural compounds, in-house Natural Products Database has been established, which contains approximately 8,000 naturally occurring chemicals so far. Most of them are documented Traditional Chinese Medicines. / In order to validate the usefulness of the database, in silico screening of acetylcholinesterase inhibitors (AChEIs) by virtual docking was performed. The database successfully identified the FDA-approved AChEIs such as huperzine and tacrine, indicating the in-house database is workable for natural products docking screening. / Apart from well-known AChE inhibitors, twelve phytochemicals (emodin, aloe-emodin, chrysophanol, rhein, xanthotoxin, phellopterin, alloisoimperatorin, imperatorin, shikonin, acetylshikonin, isovalerylshikonin and β, β-dimethylacrylshikonin) were identified as AChE inhibitors in this study that were not previously reported. Amyloid aggregation leads to toxic species that cause neuronal cell deaths, it was found that the newly identified AChEIs acetylshikonin and shikonin are able to prevent amyloid aggregation. A series of cell-based analysis were conducted for in vitro evaluation of the neuroprotective activities of the newly identified AChEIs. Acetylshikonin and its derivatives was found to prevent apoptotic cell death induced by hydrogen peroxide in human and rat neuronal SH-SY5Y and PC12 cells at 10 μM. Acetylshikonin exhibited the most potent anti-apoptotic activity through inhibition of reactive oxygen species (ROS) generation as well as protection of the loss of mitochondria membrane potential. Furthermore, acetylshikonin upregulates hemooxygenase 1(HO-1) which is a key step mediating its anti-apoptotic activity from oxidative stress in SH-SY5Y cells. / The C-X-C chemokine receptor type 4 (CXCR4) belongs to the class A family of seven transmembrane G protein-coupled receptors (GPCRs). CXCR4 has been identified as one of novel target against metastasis. A search for natural CXCR4 antagonists was conducted from natural product database by molecular docking for anti-metastasis study. Astragaloside IV, hydroxy safflower yellow A and silibinin have been identified as novel CXCR4 antagonists by both molecular docking and characterized by various cell-based assays. Anti-metastasis study showed that astragaloside IV and silibinin inhibited CXCL12-induced migration and invasion in breast cancer cells. In addition, silibinin also inhibited CXCL12-induced tube formation in human umbilical vein endothelial cells. On the other hand, hydroxy safflower yellow A exhibited a strong cytotoxicity on breast cancer cell proliferation, which is difficult to conduct anti-metastasis experiments. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Wang, Yan. / Thesis (Ph.D.) Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 230-250). / Abstracts also in Chinese.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_1077654 |
Date | January 2013 |
Contributors | Wang, Yan , active 2013 (author.), Wan, David Chi-cheong (thesis advisor.), Chinese University of Hong Kong Graduate School. Division of Biomedical Sciences, (degree granting institution.) |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography, text |
Format | electronic resource, electronic resource, remote, 1 online resource (xviii, 250 leaves) : illustrations (some color), computer, online resource |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0017 seconds