Return to search

Surface plasmon resonance photonic biosensors based on phase-sensitive measurement techniques.

Law Wing Cheung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract --- p.I / Acknowledgements --- p.V / List of Publications related to this project --- p.VI / Contents --- p.VII / Chapter Chapter 1 --- Introduction --- p.1-1 / Chapter Chapter 2 --- Literature Review / Chapter 2.1 --- Surface Plasmon Waves --- p.2-2 / Chapter 2.2 --- Excitation of Surface Plasmon --- p.2-4 / Chapter 2.2.1 --- Surface Plasmon Coupling Schemes --- p.2-6 / Chapter 2.3 --- Detection Techniques used in SPR sensors --- p.2-13 / Chapter 2.3.1 --- Angular Interrogation --- p.2-14 / Chapter 2.3.2 --- Wavelength Interrogation --- p.2-15 / Chapter 2.3.3 --- Intensity Interrogation --- p.2-16 / Chapter 2.3.4 --- Phase Interrogation --- p.2-16 / Chapter 2.3.5 --- Commercial SPR biosensors --- p.2-18 / Chapter 2.3.6 --- Comparison between Detection Techniques --- p.2-19 / Chapter 2.4 --- Applications of SPR biosensors --- p.2-21 / Chapter Chapter 3 --- Principle of Surface Plasmon Resonance Sensing Technology / Chapter 3.1 --- SPR Phenomenon --- p.3-1 / Chapter 3.2 --- Conditions for Surface Plasmon Resonance --- p.3-5 / Chapter 3.3 --- Wave-vectors --- p.3-7 / Chapter 3.4 --- Surface Plasmon Resonance described by Fresnel's Theory --- p.3-8 / Chapter 3.5 --- Concept of Surface Plasmon Resonance Biosensing --- p.3-10 / Chapter Chapter 4 --- Experiments / Chapter 4.1 --- Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on Mach-Zehnder configuration --- p.4-1 / Chapter 4.1.1 --- Materials required --- p.4-1 / Chapter 4.1.2 --- Experimental Setup --- p.4-2 / Chapter 4.1.3 --- Principle of Differential Phase Measurement --- p.4-3 / Chapter 4.1.4 --- Photodetector Circuitry --- p.4-6 / Chapter 4.1.5 --- Digital Signal Processing --- p.4-7 / Chapter 4.1.6 --- Polymer based Micro-fluidic System Integrated with SPR Biosensor --- p.4-9 / Chapter 4.2 --- Phase-sensitive Surface Plasmon Resonance Biosensor using the Photoelastic Modulation Technique --- p.4-12 / Chapter 4.2.1 --- Materials required --- p.4-12 / Chapter 4.2.2 --- Experimental Setup --- p.4-13 / Chapter 4.2.3 --- Principle of Photoelastic Modulation Technique and Signal Processing --- p.4-14 / Chapter 4.2.4 --- Operation Principle of Photoelastic Modulator --- p.4-17 / Chapter 4.3 --- Sample Preparations --- p.4-18 / Chapter 4.3.1 --- Glycerin-water Mixtures --- p.4-18 / Chapter 4.3.2 --- "PBS, BSA and BSA antibody" --- p.4-19 / Chapter 4.3.3 --- "RPMI, Trypsin, Cells and SDS" --- p.4-20 / Chapter Chapter5 --- Results amd Discussions / Chapter 5.1 --- Experimental setup I: Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on Mach-Zehnder configuration --- p.5-1 / Chapter 5.1.1 --- Measuring various glycerin-water concentration mixture with silver-gold sensing layer --- p.5-1 / Chapter 5.1.2 --- Comparison between the sensitivity of our setup and reported setup based on phase detection --- p.5-4 / Chapter 5.1.3 --- Discussion on 0.01° system resolution --- p.5-7 / Chapter 5.1.4 --- Experiment on monitoring BSA-BSA antibody binding reaction --- p.5-9 / Chapter 5.1.5 --- Matching oil and glass slide --- p.5-11 / Chapter 5.1.6 --- Experiments on monitoring BSA-BSA antibody binding reaction with integrated microfluidic system --- p.5-12 / Chapter 5.1.7 --- Experiment on observing cell adhesion properties on gold surface under the influence of trypsin --- p.5-14 / Chapter 5.1.8 --- Discussion on the non-specific binding between trypsin and gold surface --- p.5-16 / Chapter 5.1.9 --- Modifying the gold surface with BSA layer --- p.5-17 / Chapter 5.1.10 --- Experiment on observing cell adhesion properties on the gold surface under the influence Sodium Dodecyl Sulfate (SDS) --- p.5-18 / Chapter 5.2 --- Experimental setup II: Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique --- p.5-21 / Chapter 5.2.1 --- Measurement on difference glycerin-water concentration mixture --- p.5-21 / Chapter 5.2.2 --- Experiment on monitoring BSA-BSA antibody binding reaction --- p.5-23 / Chapter Chapter 6 --- Conclusions and Future Works / Chapter 6.1 --- Conclusions --- p.6-1 / Chapter 6.2 --- Future Works --- p.6-2 / References --- p.R-1 / Appendix / Chapter A. --- Phase Extraction Routine written by Matlab --- p.A-1 / Chapter B. --- Mathematical expressions for calculating the phase angle in the experiment of SPR biosensor using the Photoelastic Modulation Technique --- p.A-6 / Chapter C. --- Relationship between Concentration and Refractive Index of Glycerin-Water Mixture --- p.A-11 / Chapter D. --- Physical Properties of Bovine Serum Albumin --- p.A-12 / Chapter E. --- Simulation Curve written by Matlab --- p.A-13

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325123
Date January 2005
ContributorsLaw, Wing Cheung., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 1 v. (various pagings) : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0023 seconds